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In vivo genome editing using
Staphylococcus aureus Cas9

F. Ann Ran"?*, Le Cong"**, Winston X. Yan"***, David A. Scott"*”, Jonathan S. Gootenberg"®, Andrea J. Kriz’, Bernd Zetsche',
Ophir Shalem', Xuebing Wu”''°, Kira S. Makarova'’, Eugene V. Koonin", Phillip A. Sharp>° & Feng Zhang"®"!?

The RNA -guided endonuclease Cas9 has emerged as a versatile genome-editing platform. However, the size of the commonly
used Cas9 from Streptococcus pyogenes (SpCas9) limits its utility for basic research and therapeutic applications that use
the highly versatile adeno-associated virus (AAV) delivery vehicle. Here, we characterize six smaller Cas9 orthologues
and show that Cas9 from Staphylococcus aureus (SaCas9) can edit the genome with efficiencies similar to those of SpCas9,
while being more than 1 kilobase shorter. We packaged SaCas9 and its single guide RNA expression cassette into a single
AAV vector and targeted the cholesterol regulatory gene Pcsk9 in the mouse liver. Within one week of injection, we
observed >40% gene modification, accompanied by significant reductions in serum Pcsk9 and total cholesterol levels.
We further assess the genome-wide targeting specificity of SaCas9 and SpCas9 using BLESS, and demonstrate that
SaCas9-mediated in vivo genome editing has the potential to be efficient and specific.

Cas9, an RNA-guided endonuclease derived from the type Il CRISPR-Cas
bacterial adaptive immune system'~”, has been harnessed for genome
editing® and holds tremendous promise for biomedical research.
Genome editing of somatic tissue in postnatal animals, however, has
been limited in part by the challenge of delivering Cas9 in vivo. For this
purpose, adeno-associated virus (AAV) vectors are attractive vehicles'
because of their low immunogenic potential, reduced oncogenic risk from
host-genome integration'’, and broad range of serotype specificity'>~"".
Nevertheless, the restrictive cargo size (~4.5 kb, excluding the inverted
terminal repeats) of AAV presents an obstacle for packaging the com-
monly used Streptococcus pyogenes Cas9 (SpCas9, ~4.2kb) and its
single guide RNA (sgRNA) in a single vector; although technically
feasible', this approach leaves little room for customized expression
and control elements'®.

In search of smaller Cas9 enzymes for efficient in vivo delivery by
AAV, we have previously described a short Cas9 from the CRISPR1
locus of Streptococcus thermophilus LMD-9 (St1Cas9, ~3.3 kb)® as well
as a rationally-designed truncated form of SpCas9 (ref. 18) for genome
editing in human cells. However, both systems have important prac-
tical drawbacks: the former requires a complex protospacer-associated
motif (PAM) sequence (NNAGAAW)?, which restricts the range of
accessible targets, whereas the latter exhibits reduced activity. Given
the substantial diversity of CRISPR-Cas systems present in sequenced
microbial genomes', we therefore sought to interrogate and discover
additional Cas9 enzymes that are small, efficient and broadly targeting.

In vitro cleavage by small Cas9 enzymes

Type II CRISPR-Cas systems require only two main components for
eukaryotic genome editing: a Cas9 enzyme, and a chimaeric sgRNA®
derived from the CRISPR RNA (crRNA) and the noncoding trans-
activating crRNA (tracrRNA)**. Analysis of over 600 Cas9 orthologues

shows that these enzymes are clustered into two length groups with
characteristic protein sizes of approximately 1,350 and 1,000 amino
acid residues, respectively'®”" (Extended Data Fig. 1a), with shorter
Cas9 enzymes having significantly truncated REC domains (Fig. 1a).
From these shorter Cas9 enzymes, which belong to Type IIA and IIC
subtypes, we selected six candidates for profiling (Fig. 1a and Extended
Data Fig. 1b). To determine the cognate crRNA and tracrRNA for each
Cas9, we computationally identified regularly interspaced repeat sequences
(direct repeats) within a 2-kb window flanking the CRISPR locus. We
then predicted the tracrRNA by detecting sequences with strong com-
plementarity to the direct repeat sequence (an anti-repeat region), at
least two predicted stem-loop structures, and a Rho-independent tran-
scriptional termination signal up to 150 nucleotides downstream of the
anti-repeat region. Although a truncated tracrRNA can support robust
DNA cleavage in vitro®, previous reports show that the secondary struc-
tures of the tracrRNA are important for Cas9 activity in mammalian
cells®**'®?2, Therefore, we designed sgRNA scaffolds for each ortho-
logue by fusing the 3’ end of a truncated direct repeat with the 5 end
of the corresponding tracrRNA, including the full-length tail, via a
4-nucleotide linker® (Extended Data Fig. 1b and Supplementary Table
1). To identify the PAM sequence for each Cas9, we first constructed a
library of plasmid DNA containing a constant 20-bp target followed by
a degenerate 7-bp sequence (5'-NNNNNNN). We then incubated cell
lysate from human embryonic kidney 293FT (293FT) cells expressing
the Cas9 orthologue with its in vitro-transcribed sgRNA and the plas-
mid library. By generating a consensus from the 7-bp sequence found
on successfully cleaved DNA plasmids (Fig. 1b), we determined putative
PAMs for each Cas9 (Fig. 1¢). We observed that, similar to SpCas9, most
Cas9 orthologues cleaved targets 3-bp upstream of the PAM (Extended
Data Fig. 2). To validate each putative PAM from the library, we then
incubated a DNA template bearing the consensus PAM with cell lysate
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Figure 1| Biochemical screen for small Cas9 orthologues. a, Phylogenetic
tree of selected Cas9 orthologues. Subfamily and sizes (amino acids) are
indicated, with nuclease domains highlighted in coloured boxes, and conserved
sequences in black. b, Schematic illustration of the in vitro cleavage-based
method used to identify the first seven positions (5'-NNNNNNN) of
protospacer adjacent motifs (PAMs). ¢, Consensus PAMs for eight Cas9
orthologues from sequencing of cleaved fragments. Error bars are Bayesian 95%
confidence interval®. d, Cleavage using different orthologues and sgRNAs
targeting loci bearing the putative PAMs (consensus shown in red). Red
triangles indicate cleavage fragments.

and the corresponding sgRNA. We found that the Cas9 orthologues, in
combination with the sgRNA designs, successfully cleaved the appro-
priate targets (Fig. 1d and Supplementary Table 2).

To test whether each Cas9 orthologue can facilitate genome editing
in mammalian cells, we co-transfected 293FT cells with individual
Cas9 enzymes and their respective sgRNAs targeting human endoge-
nous loci containing the appropriate PAMs. Of the six Cas9 orthologues
tested, only the one from Staphylococcus aureus (SaCas9) produced
indels with efficiencies comparable to those of SpCas9 (Extended Data
Fig. 3a, b and Supplementary Table 3), suggesting that DNA-cleavage
activity in cell-free assays does not necessarily predict activity in mam-
malian cells. These observations prompted us to focus on harnessing
SaCas9 and its sgRNA for in vivo applications.

SaCas9 sgRNA design and PAM discovery

Although mature crRNAs in S. pyogenes are processed to contain 20-
nucleotide spacers (guides) and 19- to 22-nucleotide direct repeats®,
RNA sequencing of crRNAs from other organisms reveals that the spacer
and direct repeat sequence lengths can vary***>*. We therefore tested
sgRNAs for SaCas9 with variable guide lengths and repeat:anti-repeat
duplexes. We found that SaCas9 achieves the highest editing efficiency
in mammalian cells with guides between 21 and 23 nucleotides long
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and can accommodate a range of lengths for the direct repeat:anti-repeat
region (Fig. 2a, b, Extended Data Fig. 4). This notably contrasts with
SpCas9, where the natural 20-nucleotide guide length can be truncated
to 17 nucleotides without significantly compromising nuclease acti-
vity, while increasing specificity**. Additionally, replacing the first base
of the guide with guanine further improved SaCas9 activity (Extended
Data Fig. 3¢).

To fully characterize the SaCas9 PAM and the seed region within its
guide sequence®, we performed chromatin immunoprecipitation (ChIP)
using catalytically mutant forms of SaCas9 (dSaCas9, D10A and N580A
mutations, based on homology to SpCas9) or SpCas9 (dSpCas9, D10A
and H840A mutations) and their corresponding sgRNAs. We targeted
two loci in the human EMXI gene with composite NGGRRT PAMs,
which allow targeting by both dCas9s. A search for motifs containing
both the guide region and PAM within 50 nucleotides of the ChIP
peak summits revealed seed sequences of 7-8nucleotides for
dSaCas9 (Fig. 2¢). In addition, NNGRRT and NGG PAM:s were found
adjacent to the seed sequences for dSaCas9 and dSpCas9, respectively
(Extended Data Fig. 5). Although the 6th position of the PAM is pre-
dominantly thymine, we did observe low levels of degeneracy in both
the biochemical and ChIP-based PAM discovery assays (Fig. 1c and
Extended Data Fig. 5a). We therefore tested the base preference for this
position and determined that, although SaCas9 cleaves genomic targets
most efficiently with NNGRRT, all NNGRR PAM:s can be cleaved and
should be considered as potential targets, especially in the context of
off-target evaluations (Fig. 2d, Extended Data Fig. 6 and Supplemen-
tary Table 4).

Unbiased profiling of Cas9 specificity

As advances in Cas9 technology promise to enable a broad range of
in vivo and therapeutic applications, accurate, genome-wide identifica-
tion of off-target nuclease activity has become increasingly important.
Although a number of studies have employed sequence similarity-based
oft-target search®***** or dCas9-ChIP*"* to predict off-target sites for
Cas9, such approaches cannot assess the nuclease activity of Cas9 in a
comprehensive and unbiased manner. To measure the genome-wide
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Figure 2 | Characterization of Staphylococcus aureus Cas9 (SaCas9) in
293FT cells. a, SaCas9 sgRNA scaffold (red) and guide (blue) base-pairing
at target locus (black) immediately 5" of PAM. b, Box-whisker plot showing
indel levels vary depending on the length of the guide sequence (n = 4).

¢, dSaCas9-ChlP reveals peaks associated with seed + PAM. Text to the right
indicates the total number of peaks and percentage containing significant
(false discovery rate < 0.1) match to the guide motif followed by NNGRRT or
NNGRR PAMs. d, Pooled indel values for NNGRR(A), (C), (G), or (T) PAM
combinations (n = 12, 21, 39 and 44, respectively).
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cleavage activity of SaCas9 and SpCas9 directly, we applied BLESS (direct
in situ breaks labelling, enrichment on streptavidin and next-generation
sequencing)® to capture a snapshot of Cas9-induced DNA double-
stranded breaks (DSBs) in cells. We transfected 293FT cells with
SaCas9 or SpCas9 and the same EMXI targeting guides used in the
previous ChIP experiment, or pUC19 as a negative control. After cells
are fixed, free genomic DNA ends from DSBs are captured using
biotinylated adaptors and analysed by deep sequencing (Fig. 3a). To
identify candidate Cas9-induced DSB sites genome-wide, we estab-
lished a three-step analysis pipeline following alignment of the sequenced
BLESS reads to the genome (Extended Data Fig. 7a, Supplementary
Discussion). First, we applied nearest-neighbour clustering on the
aligned reads to identify groups of DSBs (DSB clusters) across the
genome. Second, we sought to separate potential Cas9-induced DSB
clusters from background DSB clusters resulting from low frequency
biological processes and technical artefacts, as well as high-frequency
telomeric and centromeric DSB hotspots*. From the on-target and a

small subset of verified off-target sites (predicted by sequence similarity
using a previously established method** and sequenced to detect indels),
we found that reads in Cas9-induced DSB clusters mapped to charac-
teristic, well-defined genomic positions compared to the more diffuse
alignment pattern at background DSB clusters. To distinguish between
the two types of DSB clusters, we calculated in each cluster the distance
between all possible pairs of forward and reverse-oriented reads (cor-
responding to 3" and 5" ends of DSBs), and filtered out the background
DSB clusters based on the distinctive pairwise-distance distribution of
these clusters (Extended Data Fig. 7b, ¢). Third, the DSB score for a given
locus was calculated by comparing the count of DSBs in the experi-
mental and negative control samples using a maximum-likelihood
estimate®® (Supplementary Discussion). This analysis identified the
on-target loci for both SaCas9 and SpCas9 guides as the top scoring
sites, and revealed additional sites with high DSB scores (Fig. 3b-d).
Next, we sought to assess whether DSB scores correlated with indel
formation. We used targeted deep sequencing to detect indel formation
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Figure 3 | Characterization of genome-wide nuclease activity of SaCas9 and
SpCas9. a, Schematic of BLESS processing steps. b, Manhattan plots of
genome-wide DSB clusters generated by each Cas9 and sgRNA pair, with
on-target loci shown above (see Supplementary Discussion). ¢, Correlation
between DSB scores and indel levels for top-scoring DSB clusters. Trend lines,
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7* and P values are calculated using ordinary least squares method. d, Off-target
loci from BLESS with detectable indels through targeted deep sequencing

(n = 3) are shown. Heat maps indicate DSB score (blue), motif score from ChIP
(purple), or sequence similarity score (green) for each locus. Blue triangles
indicate peak positions of BLESS signal.
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on the ~30 top-ranking off-target sites identified by BLESS for each
Cas9 and sgRNA combination. We found that only those sites that
contained PAM and homology to the guide sequence exhibited indels
(Extended Data Fig. 8). We observed a strong linear correlation between
DSB scores and indel levels for each Cas9 and sgRNA pairing (> = 0.948
and 0.989 for the two EMXI targets with SaCas9 and 7* = 0.941 and
0.753 for those with SpCas9) (Fig. 3¢, Extended Data Fig. 9b-d). Fur-
thermore, BLESS identified additional off-target sites not previously
predicted by sequence similarity to target or ChIP (Extended Data Figs 7
and 9, Supplementary Tables 5 and 6). These new off-target sites include
not only those containing Watson-Crick base-pairing mismatches to
the guide, but also the recently reported insertion and deletion mis-
matches in the guide:target heteroduplex (Fig. 3d)***°. Together, these
results highlight the need for more precise understanding of rules
governing Cas9 nuclease activity, a requisite step towards improving
the predictive power of computational guide design programs.

In vivo genome editing using SaCas9

Following in vitro characterization, we incorporated SaCas9 and its
sgRNA into an AAV vector to test its efficacy and specificity in vivo.
The small size of SaCas9 enables packaging of both a U6-driven
sgRNA and a cytomegalovirus (CMV)- or thyroxine-binding
globulin (TBG)-driven SaCas9 expression cassette into a single
AAV vector within the 4.5-kb packaging limit. Using hepatocyte-
tropic AAV serotype 8, we targeted the mouse apolipoprotein
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(Apob) gene (Extended Data Fig. 10a). One week after intravenous
administration of virus into C57BL/6 mice, we observed ~5% indel
formation in liver tissue; after four weeks, the liver tissue showed
characteristic hepatic lipid accumulation from Apob knockdown
following histology analysis using oil red staining®~’ (Extended
Data Fig. 10b, c).

We next targeted proprotein convertase subtilisin/kexin type 9
(Pcsk9), a therapeutically relevant gene involved in cholesterol home-
ostasis®®. Inhibitors of the human convertase PCSK9 have emerged as
a promising new class of cardioprotective drugs, after human genetic
studies revealed that loss of PCSK9 is associated with a reduced risk of
cardiovascular disease and lower levels of low-density lipoprotein
(LDL) cholesterol®*'. We designed two Pcsk9-targeting sgRNAs
(20-nucleotide guides with additional 5" guanine) and validated their
activity in vitro. Each sgRNA was packaged into AAV-SaCas9 and
injected into mice (2 X 10"" total genome copies) (Fig. 4a). One week
after administration, we observed greater than 40% indel formation at
either locus in whole liver tissue, with similar levels two and four
weeks post-injection (Fig. 4b). To determine the effect of Pcsk9-tar-
geting AAV-SaCas9 dosage on serum Pcsk9 and total cholesterol
levels, we administered a range of AAV titres from 0.5 X 10" to
4% 10" total genome copies. With all titres, we observed a ~95%
decrease in serum Pcsk9 and a ~40% decrease in total cholesterol one
week after administration, both of which were sustained throughout
the course of four weeks (Fig. 4c, d).
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Figure 4 | AAV-delivery of SaCas9 for in vivo genome editing. a, Single-
vector AAV system and experimental timeline. b, Indels at Pcsk9 targets in liver
tissue following injection of AAV at 2 X 10" total genome copies (n = 3
animals). ¢, d, Time course of serum Pcsk9 (c¢) and total cholesterol in animals
(d; n =3 for all titres and time points, error bars show s.e.m.). e, Manhattan

plots of BLESS-identified DSB clusters in N2a cells. Inset indicates indel levels
at top DSB scoring loci. f, Indels in liver tissue (1 = 3 animals, error bars
indicate Wilson intervals) at BLESS-identified off-target loci from N2a cells.
Heat map indicates DSB scores.
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We next considered SaCas9 off-target modifications in the liver tissue
samples. To first identify candidate off-target cleavage sites for the two
Pcsk9-targeting guides, we transiently transfected an AAV-CMV::SaCas9
vector into mouse Neuroblastoma-2a (N2a) cells and applied BLESS
to detect Cas9-induced DSBs in the genome. For both guides, we found
very low levels of DSB signal across the genome except at the on-target
loci (Fig. 4e). Targeted deep sequencing of the candidate off-target sites
identified by BLESS in N2a cells did not reveal appreciable levels of
indels in either N2a cells or liver tissue (4 weeks post injection of 2 X 10""
total genome copies) (Fig. 4e, f and Supplementary Table 8). We addi-
tionally sequenced off-target sites predicted by target sequence sim-
ilarity, and likewise did not detect indel formations (Supplementary
Table 9).

Finally, we examined the titre-matched Pcsk9-targeting and enhanced
green fluorescent protein-conjugated (EGFP) TBG-EGFP cohorts as
well as naive animals for signs of toxicity or acute immune response. At
1 week post-injection, necropsy and gross examination of liver tissue of
the cohorts revealed no abnormalities; further histological examina-
tion of the liver by haematoxylin and eosin (H&E) staining showed no
signs of inflammation, such as aggregates of lymphocytes or macro-
phages (Fig. 5a). Throughout the time course of the experiment, there
were no elevated levels of serum alanine aminotransferase (ALT), albu-
min, and total bilirubin in any of the cohorts. We observed a slight trend
in aspartate transaminase (AST) increase across all cohorts at four weeks,
including the uninjected animals. The elevated levels did not exceed the
upper limit of normal and is not indicative of hepatocellular injury in
animals (Fig. 5b). However, a larger cohort study should be conducted
to further evaluate the potential side-effects of Cas9-mediated in vivo
genome editing. In addition, the differences between mouse and human
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Figure 5 | Liver function tests and toxicity examination in injected animals.
a, Histological analysis of the liver at 1 week post-injection by haematoxylin
and eosin stain. Scale bars, 10 um. b, Liver function tests in Pcsk9-targeted
(both Pcsk9-sgl and Pcsk9-sg2; 2 X 10* total genome copies, 1 = 4),
TBG-EGFP-injected (2 X 10"" total genome copies, n = 3), and uninjected
(n = 5) animals. Dashed lines show the upper and lower ranges of normal value
in mice where applicable.
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immune responses need to be better elucidated before considering this
approach for therapeutic applications.

Discussion

Here, we develop a small and efficient Cas9 from S. aureus for in vivo
genome editing"”. The results of these experiments highlight the power
of using comparative genomic analysis'>* in expanding the CRISPR-
Cas9 toolbox. Identification of new Cas9 orthologues'*, in addition to
structure-guided engineering, could yield a repertoire of Cas9 variants
with expanded capabilities and minimized molecular weight, for nuc-
leic acid manipulation to further advance genome and epigenome
engineering.

The AAV-SaCas9 system is able to mediate efficient and rapid edit-
ing of Pcsk9 in the mouse liver, resulting in reductions of serum Pcsk9
and total cholesterol levels. To assess the specificity of SaCas9, we used
an unbiased DSB detection method, BLESS, to identify a list of can-
didate off-target cleavage sites in a mouse cell line. We examined these
sites in liver tissue transduced by AAV-SaCas9 and did not observe
any indel formation within the detection limits of in vitro BLESS and
targeted deep sequencing. Importantly, the off-target sites identified
in vitro might differ from those in vivo, which need to be further eval-
uated by the applications of BLESS or other unbiased techniques such
as those published during the revision of this work*»**. Finally, we did
not observe any overt signs of acute toxicity in mice at one to four weeks
after virus administration. Although more studies are needed to further
improve the SaCas9 system for in vivo genome editing, such as assess-
ing the long-term impact of Cas9 and sgRNA expression, these findings
suggest that in vivo genome editing using SaCas9 has the potential to be
highly efficient and specific.

Online Content Methods, along with any additional Extended Data display items
and Source Data, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS

No statistical methods were used to predetermine sample size.

In vitro transcription and cleavage assay. Cas9 orthologues were human codon-
optimized and synthesized by GenScript, and transfected into 293FT cells as described
below. Whole-cell lysates from 293FT cells were prepared with lysis buffer (20 mM
HEPES, 100 mM KCl, 5 mM MgCI2, 1 mM DTT, 5% glycerol, 0.1% Triton X-100)
supplemented with Protease Inhibitor Cocktail (Roche). T7-driven sgRNA was
transcribed in vitro using custom oligonucleotides (Supplementary Information)
and HiScribe T7 In vitro Transcription Kit (NEB), following the manufacturer’s
recommended protocol. The in vitro cleavage assay was carried out as follows: for a
20 pl cleavage reaction, 10 pl of cell lysate was incubated with 2 pl cleavage buffer
(100 mM HEPES, 500 mM KCl, 25 mM MgCl,, 5 mM DTT, 25% glycerol), 1 ug
in vitro transcribed RNA and 200 ng EcoRI-linearized pUC19 plasmid DNA or
200 ng purified PCR amplicons from mammalian genomic DNA containing target
sequence. After 30 min incubation, cleavage reactions were purified using QIAquick
Spin Columns and treated with RNase A at final concentration of 80 ng pul~" for
30 min and analysed on a 1% agarose E-Gel (Life Technologies).

In vitroPAM screen. Rho-independent transcriptional termination was predicted
using the ARNold terminator search tool'*". For the PAM library, a degenerate
7-bp sequence was cloned into a pUC19 vector. For each orthologue, the in vitro
cleavage assay was carried out as above with 1 pg T7-transcribed sgRNA and 400 ng
pUCI19 with degenerate PAM. Cleaved plasmids were linearized by Nhel, gel
extracted, and ligated with Illumina sequencing adaptors. Barcoded and purified
DNA libraries were quantified by Quant-iT PicoGreen dsDNA Assay Kit or Qubit
2.0 Fluorometer (Life Technologies) and pooled in an equimolar ratio for sequenc-
ing using the Illumina MiSeq Personal Sequencer (Life Technologies). MiSeq reads
were filtered by requiring an average Phred quality (Q score) of atleast 23, as well as
perfect sequence matches to barcodes. For reads corresponding to each orthologue,
the degenerate region was extracted. All extracted regions were then grouped and
analysed with Weblogo®.

Cell culture and transfection. Human embryonic kidney 293FT (Life Technologies),
Neuro-2a (N2a), and Hepal-6 (ATCC) cell lines were maintained in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% FBS (HyClone), 2 mM
GlutaMAX (Life Technologies), 100 Uml™" penicillin, and 100 pgml ™" strep-
tomycin at 37 °C with 5% CO, incubation.

Cells were seeded into 24-well plates (Corning) one day before transfection at
a density of 240,000 cells per well, and transfected at 70-80% confluency using
Lipofectamine 2000 (Life Technologies) following the manufacturer’s recom-
mended protocol. For each well of a 24-well plate, a total of 500 ng DNA was used.
For ChIP and BLESS, a total of 4.5 million cells are seeded the day before transfec-
tion into a 100-mm plate, and a total of 20 ug DNA was used.

DNA isolation from cells and tissue. Genomic DNA was extracted using the
QuickExtract DNA Extraction Solution (Epicentre). Briefly, pelleted cells were
resuspended in QuickExtract solution and incubated at 65 °C for 15 min, 68 °C
for 15 min, and 98 °C for 10 min (ref. 8). Genomic liver DNA was extracted from
bulk tissue fragments using a microtube bead mill homogenizer (Beadbug, Denville
Scientific) by homogenizing approximately 30-50 mg of tissue in 600 pl of DPBS
(Gibco). The homogenate was then centrifuged at 2,000 to 3,000g for 5minat 4 °C
and the pellet was resuspended in 300-600 pl QuickExtract DNA Extraction Solu-
tion (Epicentre) and incubated as above.

Indel analysis and guide:target base-pairing mismatch search. Indel analyses
by SURVEYOR assay and targeted deep sequencing were carried out and analysed
as previously described**>. The methods for identification of potential off-target
sites for SpCas9 based on Watson-Crick base-pairing mismatch between guide RNA
and target DNA has been previously described®, and adapted for SaCas9 by con-
sidering NNGRR for possible off-target PAMs. Alignment was manually adjusted
to allow for insertion and deletion mismatches in the guide:target heteroduplex®*.
Chromatin immunoprecipitation and analysis. Cells were passaged at 24 h post-
transfection into a 150-mm dish, and fixed for ChIP processing at 48 h post-
transfection. For each condition, 10 million cells are used for ChIP input, following
experimental protocols and analyses as previously described®* with the following
modifications: instead of pairwise peak-calling, ChIP peaks were only required to
be enriched over both ‘empty’ controls (dSpCas9 only, dSaCas9 only) as well as the
other Cas9/other sgRNA sample (for example, SpCas9/EMX-sg2 peaks must be
enriched over SaCas9/EMX-sgl peaks in addition to the empty controls). This was
done to avoid filtering out of real peaks present in two related samples as much as
possible.

To identify off-targets ranked by motif or sequence similarity to guide, motif
scores for ChIP peaks were calculated as follows: for a given ChIP peak, the 100-
nucleotide interval around the peak summit, the target sequence, and a given sgRNA
guide region of length L, the query, an alignment score is calculated for every
subsequence of L in the target. The subsequence with the highest score is reported

as the best match to the query. For each subsequence alignment, the score calcula-
tion begins at the 5" end of the query. For each position in the alignment, 1 is added
or subtracted for match or mismatch between the query and target, respectively. If
the score becomes negative, it is set to 0 and the calculation continued for the
remainder of the alignment. The score at the 3’ end of the query is reported as the
final score for the alignment. MACS scores = —10log(P value relative to the empty
control) are determined as previously described*®. For unbiased determination of
PAM from ChIP peaks, the peaks were analysed for the best match by motif score
to the guide region only within 50 nucleotides of the peak summit; the alignment
was extended for 10 nucleotides at the 3’ end and visualized using Weblogo™®.

To calculate the motif score threshold at which false discovery rate <0.1 for
each sample, 100-nucleotide sequences centred around peak summits were shuf-
fled while preserving dinucleotide frequency. The best match by motif score to the
guide+PAM (NGG for SpCas9, NNGRRT for SaCas9) in these shuffled sequences
was then found. The score threshold for false discovery rate < 0.1 was defined as
the score such that less than 10% of shuffled peaks had a motif score above that
score threshold.

BLESS for DSB detection. Cells are harvested at 24 h post-transfection, then
processed as previously described” with the following alterations: a total of 10
million cells are fixed for nuclei isolation and permeabilization, and treated with
Proteinase K for 4 min at 37 °C before inactivation with PMSF. All deproteinized
nuclei are used for DSB labelling with 100 mM of annealed proximal linkers over-
night. After Proteinase K digestion of labelled nuclei, chromatin was mechanic-
ally sheared with a 26G needle before sonication (BioRuptor, 20 min on high, 50%
duty cycle). 20 pg of sheared chromatin are captured on streptavidin beads, washed,
and ligated to 200 mM of distal linker. Linker hairpins are then cleaved off with
I-Scel digestion for 1h at 37 °C, and products PCR-enriched for 18 cycles before
proceeding to library preparation with TruSeq Nano LT Kit (Illumina). For the
negative control, cells mock transfected with Lipofectamine 2000 and pUC19 DNA
were parallel processed through the assay.

BLESS analysis. Fastq files were demultiplexed, and 30-bp genomic sequences
were separated from the BLESS ligation handles for alignment. Bowtie was used to
map the genomic sequences to hgl9 or mm9, allowing for a maximum of 2 mis-
matches. Following alignment, reads from all bio-replicates for an individual sample
were first pooled, and then nearest neighbour clustering was performed with a 30-bp
moving window to identify regions of enrichment across the genome. Within each
cluster, the pairwise distance was calculated between all forward and reverse read
strand mappings (Extended Data Fig. 7b, c). Pairwise distance distributions were
used to filter out wide and poorly defined DSB clusters from the well-defined DSB
clusters characteristically found at Cas9-induced cleavage sites (see Supplementary
Information). Finally, we adjusted the count of predicted Cas9-induced DSBs at a
given locus by using a binomial model to calculate the maximum-likelihood esti-
mate of peak enrichment in the Cas9-sgRNA treated sgRNAs given BLESS mea-
surements from an untreated negative control. After the maximum-likelihood
estimate calculation, a list of loci ranked by their DSB scores could be obtained
and plotted (Fig. 3b, Extended Data Fig. 8). Additional descriptions can be found in
Supplementary Information.

The top-ranking ~30 sites from the list of Cas9 induced DSB clusters were

sequenced for indel formation (Extended Data Fig. 8; validated targets in Fig. 3d).
Within these loci, PAMs and regions of target homology were identified by first
searching all PAM sites within a = 50 bp window around the DSB cluster, then
selecting the adjacent sequence with fewest mismatches to the target sequence.
Code availability. BLESS analysis code is available at https://github.com/fengz-
hanglab/BLESS.
Virus production and titration. For in-house viral production, 293FT cells (Life
Technologies) were maintained as described above in 150 mm plates. For each
transfection, 8 ug of pAAV8 serotype packaging plasmid, 10 pg of pDF6 helper
plasmid, and 6 pg of AAV2 plasmid carrying the construct of interest were added
to 1mL of serum-free DMEM. 125 pl of PEI “Max” solution (1 mgml™", pH = 7.1)
was then added to the mixture and incubated at room temperature for 5 to 10s.
After incubation, the mixture was added to 20 ml of warm maintenance media and
applied to each dish to replace the old growth media. Cells were harvested between
48h and 72 h post transfection by scraping and pelleting by centrifugation. The
AAV2/8 (AAV2 inverted terminal repeat (ITR) vectors pseudo-typed with AAV8
capsid) viral particles were then purified from the pellet according to a previously
published protocol®.

High titre and purity viruses were also produced by vector core facilities at
Children’s Hospital Boston and Massachusetts Eye and Ear Infirmary (MEEI). These
AAV vectors were then titred by real-time qPCR using a customized TagMan
probe against the transgene, and all viral preparations were titre-matched across
different batches and production facilities before experiments. The purity of AAV
vector was further verified by SDS-PAGE.
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Animal injection and processing. All mice cohorts were maintained at animal
facility with standard diet and housing following IRB-approved protocols. AAV
vector was delivered to 5-6 week old male C57/BL6 mice intravenously via lateral
tail vein injection. All dosages of AAV were adjusted to 100 pl or 200 pl with sterile
phosphate buffered saline (PBS), pH 7.4 (Gibco) before the injection. Animals were
not immunosuppressed or otherwise handled differently before injection or during
the course of the experiment except the pre-bleed fasting as noted below. The
animals were randomized to the different experimental conditions, with the inves-
tigator not blinded to the assignments.

To track the serum levels of Pcsk9 and total cholesterol, animals were fasted
overnight for 12 h before blood collection by saphenous vein bleeds (no more than
100 pl or 10% of total blood volume per week). Multiple bleeds were made before
tail vein delivery of AAV vector or control to collect pre-injection samples and to
habituate the animals to handling during the procedure. After the blood was allowed
to clot at room temperature, the serum was separated by centrifugation and stored
at -20 °C for subsequent analysis. For terminal procedures to collect liver tissue
and larger serum volumes for chemistry panels, mice were euthanized by carbon
dioxide inhalation. Subsequently, blood was collected via cardiac puncture. Trans-
cardial perfusion with 30 ml PBS removed the remaining blood, after which liver
samples were collected. The median lobe of liver was removed and fixed in 10%
neutral buffered formalin for histological analysis, while the remaining lobes were
sliced in small blocks of size less than 1 X 1 X 3 mm® and frozen for subsequent
DNA or protein extraction.

ARTICLE

Histology and serum analysis. Following tissue harvesting as described above,
flash-frozen mouse liver samples were embedded in OCT compound (Tissue Tek,
Cat # 4583), snap-frozen, and stored at —80 °C before processing. Frozen tissues
were cryosectioned at 4 um in thickness and stained with Oil Red O following man-
ufacturer’s recommended protocol. Liver histology was assessed by H&E staining
sections of 10% neutral buffer formalin fixed liver sections.

Serum levels of Pcsk9 were determined by ELISA using the Mouse Proprotein
Convertase 9/PCSK9 Quantikine ELISA Kit (MPC-900, R&D Systems), following
the manufacturer’s instructions. Total cholesterol levels were measured using the
Infinity Cholesterol Reagent (Thermo Fisher) per the manufacturer’s instructions.
Serum ALT, AST, albumin and total bilirubin were measured by an Olympus
AU5400 (IDEXX Memphis, TN).
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Extended Data Figure 1 | Selection of Type II CRISPR-Cas loci from eight  species. Spacer or ‘guide’ sequences are shown in blue, followed by direct
bacterial species. a, Distribution of lengths for Cas9 > 600 Cas9 orthologues'.  repeats (grey). Predicted tracrRNAs are shown in red, and folded based on the
b, Schematic of Type II CRISPR-Cas loci and sgRNA from eight bacterial Constraint Generation RNA folding model*.
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3 bp
Target v PAM

GGGACTCAACCAAGTCATTCNNNNNNNGTAGTAA

P. lavamentivorans - 2 | 3 l
C. diphtheriae 2] 3 |
S. pasteurianus 2 | 3 ||
N. cinerea 4 2 | 3
S.aureus - 2 | 3 1]
Clari 4 2 | 3
S. pyogenes H 2 | 3
S. thermophilus CRISPR1 2 | 3 4 5
0 05 10

Cleavage position (bp) upstream from PAM
as fraction of total reads

Extended Data Figure 2 | Cas9 orthologue cleavage pattern in vitro. Stacked
bar graph indicates the fraction of targets cleaved at 2, 3, 4, or 5 bp upstream of
PAM for each Cas9 orthologue; most Cas9 enzymes cleave stereotypically at
3 bp upstream of PAM (red triangle).
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Extended Data Figure 3 | Test of Cas9 orthologue activity in 293FT cells. generates indels efficiently for a multiple targets. ¢, Box-whisker plot of indel
a, SURVEYOR assays showing indel formation at human endogenousloci from  formation as a function of SaCas9 guide length L, with unaltered guides
co-transfection of Cas9 orthologues and sgRNA. PAM sequences for individual ~ (perfect match of L nucleotides, grey bars) or replacement of the 5’-most base
targets are shown above each lane, with the consensus region for each PAM of guide with guanine (G + L — I nucleotides, blue bars) (n = 8 guides).
highlighted in red. Red triangles indicate cleaved fragments. b, SaCas9
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Extended Data Figure 4 | Optimization of SaCas9 sgRNA scaffold in repeat to tracrRNA anti-repeat base-pairing is indicated above the grey boxes.

mammalian cells. a, Schematic of the Staphylococcus aureus subspecies aureus ~ SaCas9 cleaves targets with varying repeat:anti-repeat lengths in ¢, HEK 293FT
CRISPR locus. b, Schematic of SaCas9 sgRNA with 21-nucleotide guide,crRNA  and d, Hepal-6 cell lines. (n = 3, error bars show s.e.m.)
repeat (grey), tetraloop (black) and tracrRNA (red). The number of crRNA

©2015 Macmillan Publishers Limited. All rights reserved



ARTICLE

a SaCas target & PAM (21nt guide) SaCas target & PAM (21nt guide)
EMX1-sg1 GGCCTCCCCAAAGCCTGGCCAGGGAGT EMX1-sg2 TGGCCAGGCTTTGGGGAGGCCTGGAGT
SpCas? target & PAM (20 nt guide) SpCas9 target & PAM (20 nt guide)
SpCas9 (59 peaks) SaCas9 (7257 peaks) SpCas9 (1180 peaks) SaCas9 (12964 peaks)
2
PAM PAM PAM 2 PAM
21 1 1 1
m \
JAGT _ VAT
0 5"—N€.';JQI-D<DI'\¢D3' 0 5’#(\!;‘;-:;;&&3, 0 5,;:\-1::vmwhw3, 0 Slvmgqﬁar\ms.
- SaCas9
800 ~ 2 as .
i EMX1-sg1 S_p PA“S”a PAM ' SpCas9 w
2 -4
S 600 3
% 400 ﬂ % 5
3 '1 "2 B
e vl =
0 10 00 808, ......:-uill‘-liﬂlll ' 1 | L I"ﬁllllllhzuu 0
-60 -40 -20 1 20
1000+ i Sp PAM ~ 80
P EMX1-sg2 — " 'Sa PAM
< 800 1l, - 60 g
3 | (@]
S 600 | &
()] - 40 [{]
a o
8 400 - o
iy i
0 Enlanlolleee ull ---‘IIII’IIIIIIIIIII Illllllllillnl.l. 0
-60 -40 -20 1 20

Distance from first base of PAM (bp)

Extended Data Figure 5 | Genome-wide binding by Cas9-chromatin
immunoprecipitation (dCas9-ChIP). a, Unbiased identification of PAM
motif for dSaCas9 and dSpCas9. Peaks were analysed for the best match by
motif score to the guide region only within 50 nucleotides of the peak summit.

The alignment was extended for 10 nucleotides at the 3’ end and visualized
using Weblogo. Numbers in parentheses indicate the number of called peaks.
b, Histograms show the distribution of the peak summit relative to motif for
dSaCas9 and dSpCas9. Position 1 on x axis indicates the first base of PAM.
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Extended Data Figure 6 | Indel measurements at candidate off-target sites  of the genomic loci to the guide motif (heat map in purple), or P value of ChIP
based on ChIP. Indels at top off-target sites predicted by dCas9-ChIP for enrichment over control (heat map in red). Lines connect the common targets
each Cas9 and sgRNA pair, based on ChIP peaks ranked by sequence similarity ~ (EMX1) and off-targets between the two Cas9 enzymes.
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Extended Data Figure 7 | Analysis pipeline of sequencing data from BLESS.  reads and reverse orientation (blue) reads, displayed for representative b, DSB
a, Overview of the data analysis pipeline starting from the raw sequencing hotspots and poorly defined DSB sites and ¢, Cas9-induced DSBs with

reads. Representative sequencing read mappings and corresponding detectable indels. Fraction of pairwise distances between reads overlapping by
histograms of the pairwise distances between all the forward orientation (red)  no more than 6 bp (dashed vertical line) are indicated over histogram plots.

©2015 Macmillan Publishers Limited. All rights reserved



Target PAM

EMX1-sg1

X

GGCCTCCCCAAAGCCTGGLCAGGLAGT
GACCTCCCCATAGCCTGGLCAGGGAGE
GGCCTGCCCAAGGCCTGACCAAGGGAA

GGCCTCCCAAAGCCAGGCCAGGGGGA

GGAGGCCCCGAAGCCTGGCCACTGGGA

T PAM
GCCTCCCCAAAGCCTGGLCAGGE

ACCTCCCCATAGCCTGGCCAGGG
TCCTCCCCACAGCCTGECCAGGG
TCCTCCCCAGAGCCTGGLCATGG
ACCTCCCCACAGCCAGGCCACGG

GCCTTCCCAAAGCCCGGCCATGG

1 10

DSB score (BLESS)

COTTTTTTTTTTTTITTTTTTTTTTTT T T

CIITTTTITTTITTT T T ISR

< Indel (%, 293FT)

0 5 10 15 20

Tz

0 5 10 15 20

k

<
°©

J

-

B3 SaCasd 3 SpCas9

Extended Data Figure 8 | Indel measurements at off-target sites based on
DSB scores. List of top off-target sites ranked by DSB scores for each Cas9 and
sgRNA pair. Indel levels are determined by targeted deep sequencing. Blue
triangles indicate positions of peak BLESS signal, and where present, PAMs and
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Extended Data Figure 9 | Indel measurements of top candidate off-target
sites based on sequence similarity score. Off-targets are
sequence similarity to on-target, accounting for number and position of

Watson-Crick base-pairing mismatches as previously described®”. NNGRR
and NRG are used as potential PAMs for SaCas9 and SpCi

predicted based on

as9, respectively.
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Lines connect the common targets (EMX1) and oft-targets between the two
Cas9 enzymes. Correlation plots between indel percentages and b, prediction
based on sequence similarity, ¢, ChIP peaks ranked by motif similarity, or

d, DSB scores for top ranking off-target loci. Trendlines, 7%, and P values are
calculated using ordinary least squares.
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Extended Data Figure 10 | SaCas9 targeting Apob locus in the mouse liver.
a, Schematics illustrating the mouse Apob gene locus and the positions of the
three guides tested. b, Experimental time course and ¢, SURVEYOR assay
showing indel formation at target loci after intravenous injection of AAV2/8

carrying thyroxine-binding globulin (TBG) promoter-driven SaCas9 and
Ué6-driven guide at 2 X 10" total genome copies (1 = 1 animal each). d, Oil-red
staining of liver tissue from AAV- or saline-injected animals. Male C56BL/6
mice were injected at 8 weeks of age and analysed 4 weeks post injection.
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