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REVIEW

Programmable RNA targeting with CRISPR-Cas13
Peiguo Shi and Xuebing Wu

Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA

ABSTRACT
The RNA-targeting CRISPR-Cas13 system has enabled precise engineering of endogenous RNAs, sig-
nificantly advancing our understanding of RNA regulation and the development of RNA-based diag-
nostic and therapeutic applications. This review aims to provide a summary of Cas13-based RNA 
targeting tools and applications, discuss limitations and challenges of existing tools and suggest 
potential directions for further development of the RNA targeting system.
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CRISPR-Cas13 as a programmable RNase

The clustered regularly interspaced short palindromic repeats 
(CRISPRs) and CRISPR-associated (Cas) proteins, are bacterial 
adaptive immune systems, most of which are potent DNA/RNA 
endonucleases. In class 2 type VI CRISPR/Cas systems, single- 
subunit Cas13 system as an RNA-guided RNA endonuclease 
(RNase) has been reported since 2016. Cas13a (also known as 
C2c2) is the first subtype of Cas13 family [1–4]. The Cas13 
family now comprises 11 subtypes, including Cas13a [1,2], 
Cas13b [3], Cas13c [4], Cas13d [4], Cas13e [5], Cas13f [5], 
Cas13g [5], Cas13h [5], Cas13i [5], Cas13x [6] and Cas13y [6], 
with potentially more to be identified. While these Cas13 sys-
tems are all RNA-guided RNases, they differ in size, protein 
sequence and in their efficiency in eukaryotic cells [5,6]. 
Among them, Cas13a, Cas13b and Cas13d are the most widely 
used in mammalian cells.

Cas13 is guided by a CRISPR RNA (crRNA) and is pro-
grammed to cleave RNA targets carrying complementary pro-
tospacers [1] (Figure 1). Unlike most DNA-targeting CRISPR/ 
Cas systems that require a protospacer adjacent motif (PAM), 
Cas13 shows no strong bias on protospacer flanking sequences 
(PFS) in eukaryotic cells, allowing it to target essentially any 
sequences. Cas13 proteins typically contain two higher eukar-
yote and prokaryote nucleotide-binding (HEPN) RNase 
domains, which form a single catalytic site that cleaves target 
RNAs [7–10]. Cas13 also possesses another RNase activity that 
can process its own crRNAs from a pre-crRNA array that 
consists of multiple repeats of spacers and direct repeats 
(DRs) [2]. The pre-crRNA processing activity facilitates multi-
plexed targeting by expressing multiple crRNAs (also called 
guide RNAs or gRNAs) from a single transcript [11].

Initial studies of Cas13 in mammalian cells and plant 
cells have shown comparable levels of knockdown as RNA 
interference (RNAi) and with improved specificity [12]. 
While RNAi is less effective against nuclear RNAs, Cas13 
efficiently inhibits both nuclear and cytoplasmic RNAs. 

For instance, Cas13a has been used to knock down nuclear 
noncoding RNAs such as MALAT1, HOTTIP[11] and 
enhancer RNAs [13]. Cas13a has also been used to inhibit 
cancer-associated fusion transcripts, such as the EML4- 
ALK fusion transcript to inhibit cell viability in lung 
cancer cells [14]. In addition to linear RNAs, Cas13d can 
downregulate circular RNAs (circRNAs) by using guide 
RNAs that target sequences spanning back-splicing junc-
tion sites of circRNAs [15]. The flexibility in targeting 
essentially any sequence without the restriction of PAM/ 
PFS allows most circRNAs to be targeted without affecting 
the linear transcripts. In addition to endogenous cellular 
RNAs, Cas13 has been used to degrade viral RNAs, 
including SARS-CoV-2 [16], influenza virus [16], HIV 
[17], PRRSV [18] and HPV [19].

Cas13 has also been widely used in vivo, allowing tar-
geted RNA knockdown in xenograft tumours [20,21] and 
various tissues, including eye [22–24], ear [25,26], brain 
[22,27,28], lung [29–31], kidney [30], liver [30] and spleen 
[30]. Cas13 proteins, and especially Cas13d proteins, are 
significantly smaller than Cas9, allowing efficient package 
into Adeno-associated viruses (AAVs) along with its gRNA 
expression cassette for in vivo delivery [11]. AAV-mediated 
expression of Cas13a/gRNA targeting several oncogenes 
significantly inhibited tumour growth in xenograft models 
[20]. Similarly, AAV-Cas13d targeting the oncogenic 
KRASG12D mRNA significantly inhibited tumour growth in 
patient-derived xenografts in mice [21]. In addition to 
tumour, AAV-Cas13d has also been delivered to specific 
tissues to knock down various targets and achieved pheno-
typic rescue in mouse models of age-related macular degen-
eration [23], hearing loss [25], Parkinson’s disease [22], 
TDP-43 proteinopathy [32] and amyotrophic lateral sclero-
sis (ALS) [33], respectively. In addition to AAV, non-viral 
approaches including lipid nanoparticles (LNPs) [31], extra-
cellular vesicles (EVs) [30] and nebulizer-based 
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nanoformulated RNA complex delivery [29] have also been 
used to deliver Cas13/gRNA, especially to the lung.

Engineering RNA with CRISPR-dCas13

Point mutations in the two HEPN RNase domains inactivate 
the gRNA-dependent target cleavage activity, allowing target 
RNAs to be bound without being degraded (Figure 2). While 

often called catalytically dead Cas13 (dCas13), the resulting 
HEPN-deficient Cas13 retains the pre-crRNA processing 
RNase activity and thus remains capable of multiplexing. 
dCas13 can be used as a programmable RNA-binding protein 
(RBP), allowing it to act as a competitive inhibitor of endo-
genous RBPs on a specific transcript [34]. Similarly, other 
functional RNA signals such as splice sites, polyadenylation 
signals and start codons of a specific transcript can be targeted 

Figure 1. CRISPR-Cas13 and its collateral activity.
Upon recognition of the target RNA by the crRNA (black), the activated Cas13 not only cleaves the target RNA (red) in cis but also cuts other nearby RNAs (blue) in 
trans.

Figure 2. Applications of dCas13.
dCas13 alone or its fusion with various effector domains allows precise manipulation of RNAs in eukaryotic cells.
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by dCas13 to modulate splicing [11], polyadenylation [35] and 
translation initiation [36], respectively.

Furthermore, various effector domains have been fused 
with dCas13 for additional applications. For example, dCas13- 
GFP has been used to label and track RNAs in live cells 
[12,37]. Affinity purification of tagged dCas13 loaded with 
specific gRNAs allows the detection of proteins bound to an 
RNA of interest [38,39]. Artificial splicing factors fusing 
dCas13 with domains of splicing factors can modulate alter-
native splicing of endogenous transcripts [11,40]. Direct inser-
tion or replacement of thousands of nucleotides in 
endogenous RNAs is now possible with dCas13-mediated 
trans-splicing [41]. Targeted A-to-I and C-to-U RNA editing 
have also been developed by fusing dCas13 with either endo-
genous or evolved deaminase domains, respectively [42,43]. 
Fusing nucleus- or cytoplasm-localized dCas13 with 
a methyltransferase domain enables site-specific 
N6-Methyladenosine (m6A) incorporation within distinct cel-
lular compartments [44]. Conversely, RNA modifications 
such as m6A and m1A can be removed in site-specific manner 
by fusing dCas13 with corresponding demethylases, such as 
ALKBH5 and ALKBH3, respectively [45,46]. Translation of 
specific mRNAs can be enhanced by dCas13 fused to transla-
tion initiation factors such as IF3 in Escherichia coli [47] and 
PABPC1 in various human cells [48].

In addition to fusing protein effector domains to dCas13, 
new functions can be generated by fusing functional RNA 
elements to the gRNA. While similar ideas have successfully 
been used in dCas9-based applications [49,50], tethering RNA 
regulatory elements via gRNAs may be particularly suitable 
for RNA-targeting applications. For example, the SINEB2 
RNA element has been fused with gRNA to enhance transla-
tion of target mRNAs [51]. Given the large number of func-
tional RNA regulatory elements controlling every step of the 
RNA life cycle [52], we envision further expansion of 
the dCas13 RNA toolkit by tethering other RNA elements to 
the gRNA. Compared to protein effector domains, RNA ele-
ments are typically much smaller, making it easier to multi-
plex and package in adeno-associated virus (AAV) for in vivo 
delivery.

Target specificity of Cas13: off-targets and mismatch 
tolerance

In general, CRISPR/Cas13 exhibits tolerance for a single mis-
match between the target RNA, with the gRNA spacer nucleo-
tides 15–21 being more sensitive to mismatches in the target 
site [53]. The presence of more than two mismatches often 
leads to a reduction in cleavage efficiency [54], although in 
some cases more mismatches can be tolerated [55]. Moreover, 
the sensitivity to mismatches is also highly variable across 
positions within the gRNA/target RNA duplex as well as the 
nucleotide identity of the mismatch [56,57]. The lack of a set 
of simple rules for targeting specificity calls for sophisticated 
machine learning models to be trained using large-scale 
experimental measurements of mismatch tolerance for each 
Cas13 system. Encouragingly, at least two approaches have 
been shown to decrease mismatch tolerance and allow specific 
detection of SNPs. The first approach is synthetic mismatch, 

i.e. use gRNAs with one or more mismatches to the desired 
targets [58,59]. Cas13 will tolerate the limited number of 
mismatches in the target but not more mismatches found in 
off-targets. The second approach is to extend the spacer at the 
3’ end of the gRNA with a sequence that will form a short 
stem loop/hairpin with the spacer. By blocking part of the 
spacer, the hairpin prevents the gRNA from binding to off- 
target RNA sequences and improves the specificity of the 
CRISPR/Cas13a system for single nucleotide polymorphism 
(SNP) identification [60]. Despite extensive research endea-
vours, enhancing the specificity of Cas13 systems remains an 
area that warrants further attention and improvement.

Cas13 collateral activity in bacteria and in vitro

Upon target RNA recognition, Cas13 undergoes 
a conformational change and becomes an activated RNase. 
Unlike most Cas proteins that cleave within the guide/target 
duplex, the activated RNase site is exposed on the surface of 
Cas13 [7,8], allowing it to cleave not only the bound target 
RNA in cis but also other nearby RNAs in trans (Figure 1). 
Such collateral activity allows bacteria to degrade both phage 
RNAs and host RNAs upon phage infection, resulting in 
growth arrest of the host cell and the abortion of the infec-
tious cycle [61]. Similar ‘suicide’ responses are also triggered 
by several other antiviral systems [62], including the type IIIA 
CRISPR-Cas system employing the RNase Csm6 that indis-
criminately degrades both viral and host RNAs.

It is important to keep in mind that collateral activity is 
fundamentally different from conventional off-target effects. 
Off-targets of CRISPR or RNAi still directly pair with the 
guide RNA or siRNA, albeit with one or more mismatches. 
In contrast, Cas13 collateral activity is indiscriminate, and the 
degraded substrate does not need to have sequence comple-
mentarity to the guide RNA. Moreover, off-target effects are 
largely independent of whether the intended on-target is pre-
sent, whereas collateral activity is only activated upon recog-
nition of the on-target RNA that perfectly matches the guide 
RNA, although in principle conventional off-targets can also 
activate collateral activity, as long as the mismatch is tolerated.

The collateral activity of Cas13 has found diverse applica-
tions across numerous fields (Figure 3). For example, the 
ability to sense a specific sequence and induce 
self-destruction of bacterial cells has been used for sequence- 
specific bacteria killing. By packaging programmed CRISPR- 
Cas13a recognizing resistance genes into bacteriophage 
capsids, Kiga and colleagues created a new type of antibacter-
ial agent called ‘CapsidCas13a(s)’ that inhibited the growth of 
carbapenem-resistant Escherichia coli and methicillin-resistant 
Staphylococcus aureus, two types of bacteria known for their 
resistance to common antibiotics [63]. Supporting a role of 
Cas13 collateral activity in causing the observed growth arrest, 
targeting the same gene with CRISPR/Cas9 did not result in 
the same defect, which is not known to have collateral activity.

Cas13 collateral activity has also been leveraged for sensi-
tive detection of RNA or DNA (when coupled with in vitro 
transcription). In the presence of a target RNA, activated 
Cas13a cleaves a self-quenched reporter RNA, which results 
in the emission of fluorescence. The amount of fluorescence 
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emitted is proportional to the concentration of the target 
RNA. The sensitivity can be further increased by isothermal 
amplification of the target and by incorporating Csm6, an 
auxiliary CRISPR-associated enzyme [64]. The resulting 
SHERLOCK platform allows ultrasensitive detection of patho-
genic virus (e.g. Zika and Dengue viruses) and bacteria and is 
also highly specific in distinguishing specific viral strains, 
human SNPs and tumour mutations [58]. Technical improve-
ments in several related platforms, including HUDSON [65], 
SHINE [66], CASCADE [67], RT-LAMP-CRISPR-Cas13a 
[68], have allowed rapid, instrument-free and extraction-free 
detection of RNAs including SARS-CoV-2 RNA from unex-
tracted samples. Integrated with the CARMEN platform that 
can simultaneously analyse over 4,500 crRNA-target pairs 
within a single array, CARMEN-Cas13 can detect all 169 
viruses associated with humans in a single test [69]. Cas13 
has also been used to detect microRNAs [70,71], RNA mod-
ifications [72], as well as small molecules when coupled with 
riboswitches [73].

Cas13 collateral activity in eukaryotic cells

While evidence supporting Cas13 collateral activity in vitro 
and in bacterial systems has been abundant and clear, the 
extent of such activity in eukaryotic cells remains a subject 
of inconsistency in various published papers. Early studies of 
Cas13a and Cas13d did not report any off-target or collateral 
effects in mammalian cells [11,12,42]. Instead, these studies 
show that Cas13-mediated transcript knockdown is remark-
ably specific, with zero off-targets compared to hundreds for 
shRNA-mediated knockdown [11,12] when assayed with 
RNA-seq. In Drosophila transgenic cell line Sg4_CD, 
a number of Cas13 variants can efficiently knock down an 
eCFP reporter without affecting a co-expressed DsRed repor-
ter [74]. Another study tested Cas13d-mediated transcript 
knockdown in zebrafish embryos and observed no toxic 
effects, off-target impacts or collateral activity [75]. Similarly, 
Cas13a downregulated endogenous PPIB and KRAS mRNAs 
in human lung epithelial cells A549 with no significant 

Figure 3. Applications of Cas13 collateral activity.
Cas13 collateral activity has been used for nucleic acid detection, disease targeting and several other applications.
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changes in the expression of 11 housekeeping genes and 18S 
rRNA [29].

More recent studies, however, have found substantial col-
lateral activity of various Cas13 systems in mammalian and 
Drosophila cells using a variety of assays [6,76–79]. For exam-
ple, we and others have shown that targeting either reporter 
mRNAs (e.g. EGFP) or endogenous RNAs (e.g. ACTG1) can 
result in the degradation of co-expressed non-target reporter 
RNAs (e.g. mCherry), Cas13 mRNAs and other endogenous 
RNAs, as measured by qRT-PCR, Northern blotting, Western 
blotting and fluorescence imaging. Multiple studies have also 
reported a loss of RNA integrity, as indicated by rRNA clea-
vage and fragmentation in denaturing RNA gel or 
BioAnalyzer runs [78]. Supporting global RNA degradation 
caused by Cas13 collateral activity, we further showed a 46% 
decrease in total RNA extracted from Cas13 targeted cells 
[77]. Moreover, using polyA+ RNA-seq with external spike- 
in, we have shown that almost the entire transcriptome is 
downregulated by Cas13 collateral activity, including 
GAPDH, ACTB and other housekeeping genes [77].

How do we reconcile the contradictory observations 
regarding Cas13 collateral activity in eukaryotic cells? The 
difficulty for internal control-based normalization has prob-
ably contributed to the failure to detect collateral activity in 
some studies, because commonly used control such as 
GAPDH and even rRNA are also down-regulated by Cas13 
collateral activity [77]. Moreover, recent studies have shown 
that the extent of collateral activity is strongly correlated with 
target RNA abundance [76,77,79], and earlier studies report-
ing a lack of collateral activity were mostly targeting low 
abundance RNAs [11]. There is also a substantial variation 
of collateral activity observed for different subtypes of Cas13 
proteins, with Cas13d showing the strongest effect, followed 
by Cas13a and then Cas13b [79]. Intriguingly, the extent of 
collateral activity also varies across cell types. For example, it 
has been shown that Cas13a exhibits a stronger collateral 
activity in U87 cells but not in HEK293T cells [78], although 
we have observed very strong collateral activity in HEK293T 
cells using Cas13d [77]. Such substantial variations could be 
due to variation in the expression level of Cas13, gRNA and 
the target RNA in those cells, or even variation in cellular pH 
[80–84], as RNase activities are sensitive to pH [85]. 
Therefore, the extent of collateral activity observed depends 
on a variety of factors, potentially underlying the contradic-
tory results reported in the literature.

The unintended indiscriminate degradation of cellular 
RNAs is a major concern for using Cas13 to knock down 
specific target RNAs in cells, especially for abundant targets. 
While reducing Cas13/gRNA abundance [86] or stability [76] 
can potentially reduce off-target binding and thus off-target- 
activated collateral activity, it is inherently challenging to 
reduce on-target-activated collateral activity without compro-
mising on-target knockdown efficiency, as the same active site 
is responsible for both activities. Nonetheless, the collateral 
activity varies dramatically across Cas13 subtypes (e.g. 
PspCas13b vs RfxCas13d) and novel Cas13 orthologs (e.g. 
DjCas13d) with minimal cellular toxicity have recently been 
identified [87]. Moreover, high-fidelity variants of Cas13d and 

Cas13X have also been engineered [88], and in particular the 
RfxCas13d-N2V7 variant has been independently shown to be 
more specific than Cas7–11, another RNA-targeting CRISPR 
system not known to have collateral activity [32,89]. It 
remains unclear mechanistically how collateral activity is 
modulated in those Cas13 variants/orthologs. Possibilities 
include structural changes that position the active site closer 
to the target region and less exposed on the surface, or 
decrease the stability of the active Cas13-gRNA-target ternary 
complex, such that it stays active long enough to cleave the 
target RNA which is in close proximity, but not long enough 
to cleave a larger number of other RNAs in cells.

Sequence-specific cell targeting with CRISPR-Cas13

The activation of Cas13 collateral activity arrests the growth of 
infected bacteria. Similarly in human cells, Cas13-mediated 
targeting of reporter mRNAs or non-essential endogenous 
mRNAs substantially reduces the viability and proliferation of 
cells [77]. Similar to collateral RNA degradation, the extent of 
growth defect is positively correlated with target RNA abun-
dance [77]. While apoptosis is observed in some studies [76], 
others reported no increase in cell death, only a reduction in 
cellular metabolic activity and DNA replication [77]. 
Interestingly, similar to RNase treatment of nuclei [90,91], 
Cas13 collateral activity also results in the collapse of chroma-
tin, potentially contributing to global mRNA downregulation 
and inhibition of DNA replication. The toxicity of Cas13 col-
lateral activity has also been observed in vivo. Strikingly, 
Cas13d-mediated knockdown of several non-essential 
mRNAs in adult mouse brain resulted in animal death [92]. 
The lethality strictly depends on simultaneous expression of 
Cas13, gRNA and the target, suggesting the toxicity is driven by 
collateral activity rather than off-target effects [92].

The ability to inhibit cell growth or even induce cell death 
by sensing a marker RNA opens the door for sequence- 
specific cell targeting. Programmable elimination of patho-
genic cells such as cancer cells, activated fibroblasts and 
senescent cells will facilitate the development of therapies 
against cancer, fibrosis and ageing, respectively. Such 
a technology platform will also allow functional studies of 
novel cell types or cell states uncovered by single-cell RNA 
sequencing. As a proof-of-principle, we have previously 
demonstrated in a competitive growth assay that a subset of 
cells can be selectively depleted by Cas13-mediated sensing of 
a dispensable reporter RNA uniquely expressed in the target 
cell population [77]. The same concept has been applied 
in vivo for selective elimination of cancer cells by targeting 
cancer-specific oncogenic mRNAs. For instance, Kang and 
colleagues showed that Cas13a targeting of oncogenic 
EGFRvIII mRNA significantly inhibited tumour growth 
in vivo [78] (although it remains to be shown that Cas13 
collateral activity, rather than the loss of the oncogenic target 
mRNA alone, drove tumour regression). Further enhancing 
Cas13 collateral activity will enable more potent cell killing. 
Encouragingly, Yang and colleagues have shown that the 
collateral activity of Cas13a can be enhanced by inserting an 
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extra RNA-binding domain into a unique active-site-proximal 
loop within its HEPN domains [93].

Outstanding questions

Given the numerous applications of the Cas13 system in bio-
medical research, clinical diagnostics and potential therapeutic 
applications, it is critical to understand its limitations and avoid 
potential pitfalls. While high-fidelity variants of Cas13 alleviate 
the concern of unintended collateral RNA degradation for tar-
geted RNA knockdown, recent studies have uncovered unex-
pected effect of expressing either Cas13 or gRNA alone. 
A deeper understanding of these observations and the under-
lying mechanisms will facilitate the development of next- 
generation high-fidelity Cas13 tools for various applications.

Cas13-independent effects of guide RNAs. While gRNAs are 
thought to be loaded into Cas13 first and subsequently bind 
target RNAs via sequence complementarity, the gRNA/target 
duplex is long (20–30 bp) and can be stably formed in cells 
even in the absence of Cas13. Binding by the gRNA alone can 
potentially block regulatory sites on the target mRNA or 
recruit double-strand RNA (dsRNA) binding proteins. For 
example, when used in plants, Cas13 gRNAs with 28-nt but 
not 20-nt spacers down-regulated target RNAs via endogen-
ous RNAi machinery in the absence of Cas13a [94]. Such 
effect was also seen with Cas9 gRNAs with 28-nt spacers. 
A similar observation was also made in human A459 cells: 
one out of three gRNAs tested decreased CXCR4 mRNA by 
over 90% in the absence of Cas13a [29], although in this case 
it was unclear whether a long spacer was used and whether 
the RNAi machinery is involved. Similarly, expressing Cas13b 
gRNAs with a 31-nt spacer degraded a viral RNA in mosquito 
cells in the absence of Cas13b protein [95]. Such Cas13- 
independent RNAi-like target silencing could potentially 
result in more off-target effects for targeted knockdown and 
complicate the interpretation of dCas13-based applications 
such as imaging and splicing modulation. It has also been 
shown that when the spacer region is longer than 40-nt, the 
long duplex formed with the target RNA will trigger efficient 
target RNA editing by recruiting endogenous RNA editing 
enzyme ADAR1 [96]. The edited target RNA may no longer 
trigger Cas13-mediated cleavage, potentially explaining why 
gRNAs longer than 30-nt results in less efficient knockdown 
[53]. These Cas13-independent effects of gRNAs highlight the 
caveat of using Cas13 gRNAs with long spacers and under-
score the importance of proper controls. More systematic 
studies are needed to understand the prevalence of Cas13- 
independent effect and how to avoid it, for both the widely 
used Cas13 orthologs and the high-fidelity variants.

Guide RNA-independent Cas13 activity and toxicity. Several 
studies have reported unexpected toxicity when certain variants 
of Cas13 are expressed alone without corresponding gRNAs. 
For example, plasmid-based expression of LwaCas13a or 
PspCas13b but not RfxCas13d (CasRx) alone inhibited neurite 
and dendrite growth in primary cultures of mouse neurons 
[97,98]. Similarly, injecting PguCas13b and PspCas13b but not 
RfxCas13d proteins impaired zebrafish embryonic development 
[75]. While RfxCas13d/CasRx is less toxic in cultured mouse 
neurons, ubiquitously expressed CasRx caused embryonic 

lethality in flies, as flies homozygote for CasRx cannot be 
generated [99]. Intriguingly, even dCasRx homozygous flies 
cannot be generated. This observation suggests that the 
observed toxicity is likely caused by the pre-crRNA processing 
RNase activity, which remains intact in dCas13 [100,101]. 
Cas13/dCas13 proteins recognize the direct repeat region in 
pre-crRNAs, which forms a short hairpin with moderate 
sequence specificity. Similar hairpin structures could potentially 
be found in many endogenous RNAs in eukaryotic cells, espe-
cially in neurons that are known to enrich for dsRNAs [102]. 
The recognition of these direct repeat-like structures will result 
in the cleavage and degradation of endogenous transcripts, 
potentially causing cellular toxicity. Supporting this idea, Li 
and colleagues discovered that LwCas13a, PspCas13b and 
RfxCas13d all bind thousands of endogenous mRNAs in 
HEK293T cells and are capable of cleaving endogenous RNAs 
in vitro without corresponding gRNAs [103]. Future studies will 
delineate whether Cas13/dCas13 processes endogenous RNAs 
into crRNAs/gRNAs, and whether inactivating the pre-crRNA 
processing activity will abolish gRNA-independent toxicity.

Conclusions

Since its initial discovery in 2016, the RNA-targeting CRISPR/ 
Cas13 system has not only transformed the basic research of 
RNA biology but has also significantly advanced RNA-based 
diagnostics and therapeutics. The ability to target essentially any 
sequences in RNA, nuclear or cytoplasmic, in a highly efficient 
and specific manner, makes Cas13 a powerful tool for gene 
targeting. Its compact size, coupled with its inherent multiplex-
ibility, further enhances its potential as a therapeutic platform. 
The ever-expanding dCas13 toolkit facilitates a diverse range of 
RNA manipulations with single-nucleotide precision and speci-
ficity. The capability to precisely edit endogenous RNAs, includ-
ing multi-kilobase replacements or insertions, without altering 
DNA, opens the door for developing safer therapies across 
a spectrum of diseases [41]. The collateral activity of Cas13, 
while initially perceived as a constraint, has proven immensely 
successful in pathogen detection, and has the potential to 
become a powerful platform for precision cell targeting. We 
envision continued development of Cas13 technologies to 
enable more exciting applications in biomedical research and 
RNA-based diagnostics and RNA-targeting therapeutics.
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