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ABSTRACT

Motivation: Understanding the complexity in gene-phenotype
relationship is vital for revealing the genetic basis of common
diseases. Recent studies on the basis of human interactome and
phenome not only uncovers prevalent phenotypic overlap and
genetic overlap between diseases, but also reveals a modular
organization of the genetic landscape of human diseases, providing
new opportunities to reduce the complexity in dissecting the gene-
phenotype association.

Results: We provide systematic and quantitative evidence that
phenotypic overlap implies genetic overlap. With these results, we
perform the first heterogeneous alignment of human interactome and
phenome via a network alignment technique and identify 39 disease
families with corresponding causative gene networks. Finally, we
propose AlignPI, an alignment-based framework to predict disease
genes, and identify plausible candidates for 70 diseases. Our method
scales well to the whole genome, as demonstrated by prioritizing
6154 genes across 37 chromosome regions for Crohn’s disease (CD).
Results are consistent with a recent meta-analysis of genome-wide
association studies for CD.

Availability: Bi-modules and disease gene predictions are freely
available at the URL http://bioinfo.au.tsinghua.edu.cn/alignpi/
Contact: ruijiang@tsinghua.edu.cn

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Recently, several large-scale studies have systematically evaluated
the complex relationship between human genetic diseases and genes,
revealing prevalent phenotypic overlap (van Driel ef al., 2006) and
genetic overlap (Rzhetsky ez al., 2007) between human diseases. Our
previous effort in the genome-wide inference of disease genes for
5080 human diseases reveals a modular organization of the genetic
landscape of human diseases (Wu et al., 2008). These endeavors
further spur the transition from the Mendelian ‘one gene — one
phenotype’ rule to a ‘muti-gene — multi-phenotype’ paradigm. It is
now well recognized that phenotypes are the outward manifestation
of network effects among products of multiple genes. For example,
a macrophage-enriched network has been shown to be responsible
for a group of metabolic traits (Chen et al., 2008). As genes and
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diseases are highly intra- and inter-connected, the new paradigm
requires new network-based framework to reduce the complexity
and to facilitate the discovery of novel disease genes (Pujana et al.,
2007).

We have shown that a simple linear regression model efficiently
captures the underlying architecture of the human interactome
and phenome networks (Wu et al., 2008). The human disease
phenome is depicted by a network of disease phenotypes, with edges
weighted by phenotypic overlap scores. Similarly, the interactome
is a network of genes linked by physical interactions between their
protein products. The two networks are further linked by gene—
phenotype associations. We have shown that the proximity between
disease genes in the gene network could explain the phenotypic
overlap of diseases, and the success of this model suggests a global
concordance of the topology between the phenotype network and
the gene network. It remains interesting to see whether a direct
comparison of the network topology can identify consistent or
‘conserved’ parts between the human interactome and phenome
networks. For example, it may be possible that we could find a
group of phenotypically overlapped diseases (a disease module),
with a corresponding group of causative genes (a gene module).
In such a scenario, the causative gene network may suggest a
common pathway for the disease family and explain the overlap
between the diseases. In addition, the alignment could also provide
an effective way to peel modular sub-structures (or bi-module here)
from the modular genetic landscape of human diseases, hence
greatly reducing the complexity for further analysis.

As a proof-of-concept, we compare human interactome and
phenome networks with the network alignment technique, which
is originally proposed for comparing protein networks (Sharan and
Ideker, 2006). Typically, network alignment works on networks from
two species and seeks to identify pairs of sub-networks, one from
each species, with sequence similarity between nodes (proteins)
from different species. The identified pairs of sub-networks are
thought to be conserved protein complexes or pathways. The
alignment takes three inputs: two protein networks from different
species and some inter-network links (similarity in sequence). We
call this a homogenous alignment, because the aligned networks are
of the same type (protein—protein interaction network). However,
technically, network alignment can also be applied to heterogeneous
networks, as far as there are inter-network links defining the
correspondence between nodes from two networks. In this study, we
perform the first heterogeneous alignment of human interactome and
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phenome networks, with inter-network links defined as the causal
relationships between genes and diseases.

The underlying rationale for aligning human interactome
and phenome networks is the consistency between phenotypic
overlap and genetic overlap. That is, phenotypic overlap between
two disease phenotypes implies their shared pathogenesis. This
consistency assumption has not yet been verified systematically and
quantitatively. However, a similar hypothesis, that similar diseases
(or mutant phenotypes) are caused by functionally related genes (Oti
and Brunner, 2007), has been supported by more and more evidences
from not only model organisms (Fraser and Plotkin, 2007; Lee et al.,
2008; McGary et al., 2007) but also human (Goh et al., 2007; Lage
et al., 2007; Lim et al., 2006; van Driel et al., 2006; Wood et al.,
2007), and has led to remarkable success in screening candidate
disease genes (Lage et al.,2007; Wu et al., 2008). Recently, van Driel
et al. (2006) quantified the pairwise phenotypic similarity/overlap
among 5080 human disease phenotypes by examining the overlap
of medical terms that describe the phenotypes. Later, Rzhetsky et al.
(2007) estimated the genetic overlap between 161 disorders based
on their frequency of co-occurrence in 1.5 million patient records.
With these quantitative data, we are able to verify the correlation
between phenotypic overlap and genetic overlap.

2 METHODS

2.1 Data source

The gene network contains 34364 manually curated protein—protein
interactions of 8919 human genes, and is obtained from HPRD (Mishra ez al.,
2006). The phenotype network consists of 5080 human phenotypes defined
in the OMIM database (McKusick, 2007) and the pairwise similarity scores
are calculated by text mining, reported by van Driel et al. (2006). The gene—
phenotype links are defined in the morbidmap of OMIM and 1428 can be
mapped to our dataset. The genetic overlap estimation between 161 disorders
is published by Rzhetsky et al. (2007). Disease category information is from
a manual classification concerning the physiological system affected (Goh
et al., 2007). Linkage loci with unknown molecular basis are extracted from
the OMIM database (entries with prefix %). Gene position information is
obtained from NCBI.

2.2 Network alignment and bi-module analysis

‘We use the network comparison toolkit developed by Ideker lab for network
alignment (http://chianti.ucsd.edu/nct/index.php), which implements the
model proposed by Sharan et al. (2005). Here, we briefly describe the
framework applied to our problem. First, the input networks are assembled
into a network alignment graph, and then a log likelihood ratio model is used
to score the sub-networks on the weighted alignment graph. The scoring
model compares the fit of a sub-network to the desired structure (linear
path or clique) versus its likelihood given that each network is randomly
constructed. Finally, an algorithm searches exhaustively over the alignment
graph to identify high-scoring sub-networks. We have tried most of the
tunable parameters in this algorithm, and found that they actually have quite
limited impact. Therefore, we use their default settings. We call the identified
pairs of sub-networks bi-modules, each comprising a disease module (the
disease sub-network) and a gene module (the gene sub-network), together
with gene—disease links between them. We perform enrichment analysis
to find over-represented gene functions and disease categories for each bi-
module. Gene functions (Gene Ontology terms) analysis for the gene module
is carried out by DAVID (Dennis et al., 2003): http://david.abcc.nciferf.gov/.
The P-value of enriched disease category is calculated using Fisher’s exact

test, which has been widely used for enrichment analysis (Al-Shahrour et al.,
2007; Beissbarth and Speed, 2004).

2.3 Benchmark test and prediction

We test the disease gene prediction framework using phenotype network
with edge weight threshold of 0.50, 0.55, 0.60 and 0.65. For a threshold
smaller than 0.5, the dataset is too large for the program to run, while for
a threshold larger than 0.65, the gene—phenotype links are too few for a
statistically reasonable validation. At each threshold, the remaining gene—
disease links are used to construct the benchmark data. For each gene—disease
link, we simulate a linkage locus around the true disease gene by including
108 neighboring genes as negative controls. This strategy for resembling
known disease loci in the OMIM database has been widely used in previous
studies (Lage et al., 2007; Wu et al., 2008). The 109 test genes are then
treated equally by assuming links to the disease under study and go through
the network alignment procedure. The genes will compete with each other in
this procedure, and the one retained in the bi-module with the highest score
is predicted as the causative gene. For prediction, all settings are the same
as in the benchmark test, except that the genetic loci are real linkage results
collected in OMIM instead of simulated loci.

3 RESULTS

3.1 Phenotypic overlap implies genetic overlap

Assuming that there are shared genetic variations underlying
multiple disorders that co-occur in individual patients significantly
more (or significantly less) frequently than expected, Rzhetsky
et al. inferred the genetic overlaps between 161 disorders based
on 1.5 million patient records and a sophisticated statistical model
(Rzhetsky et al., 2007). To investigate the phenotypic overlap
between the 161 disorders, we manually map OMIM phenotypes
to these disorders. Frequently, more than one OMIM phenotype
will be found for one disorder. In such cases, the highest pairwise
phenotypic overlap score between mapped OMIM phenotypes, one
from each disorder, is used as the score for corresponding disorder
pair (using score mean yields similar results). We are able to map at
least one OMIM phenotype entry for 107 of the 161 disorders and
assign phenotypic overlap scores to them.

We compare the average genetic overlap between disorder pairs
with phenotypic overlap larger than a threshold (7)) and those
of smaller. At each threshold, the disorder pairs are divided into
two groups: those with phenotypic overlap scores smaller than
the threshold and those with phenotypic overlap scores larger
than the threshold. Then, the average genetic overlap score is
calculated for each group separately, and the result is plotted as
bars. Results for 7=0.4, 0.5 and 0.6 are plotted in Figure la.
We find indeed that disorder pairs with higher phenotypic overlap
have higher genetic overlap, and this contrast becomes sharper for
higher phenotypic overlap score threshold. We also calculate the
Pearson’s correlation coefficient (PCC) between the genetic overlap
and phenotypic overlap of the same disorder pair. Similarly, we
check the correlation of phenotypic overlap and genetic overlap for
disorder pairs with different levels of phenotypic overlap. Given a
threshold for phenotypic overlap scores, we calculate the correlation
coefficient for disorder pairs whose phenotypic overlap is larger than
the threshold. We first transform the genetic overlap score by a log
formula y =1In(1 + x), because the score ranges from zero to several
thousand. Most of the genetic overlap scores are positive, but some
are negative [co-occur less frequently than expected, interpreted as
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Fig. 1. Phenotypic overlap implies genetic overlap. (a) Average genetic
overlap of disorder pairs with phenotypic overlap larger than a threshold
(T) versus those of smaller. Results with 7=0.4, 0.5, 0.6 are given.
(b) The correlation between phenotypic overlap and genetic overlap becomes
stronger when phenotypic overlap increases. Each point (circle) represents
the correlation coefficient (Y) for genetic overlap and phenotypic overlap
scores when considering disorder pairs with phenotypic overlap larger than
a threshold (X).

a genetic overlap via competition (Rzhetsky et al., 2007)]. For the
negative ones, we use their absolute value, but analysis excluding
negative scores yields similar results. Results (Fig. 1b) show that
the overall correlation is weak (PCC=0.1), but very significant
(P=1.2x10~13). Further, for disorder pairs with higher phenotypic
overlap, the correlation becomes stronger, and there is a linear
relationship between the correlation coefficient and the phenotypic
overlap score (Fig. 1b). For disorder pairs with phenotypic overlap
scores larger than 0.6, the correlation coefficient is larger than 0.4.
These results confirm that phenotypic overlap is a general indicator
of shared pathogenesis.

3.2 Align human interactome and phenome networks

With the consistency between phenotypic overlap and genetic
overlap justified, we perform the first heterogeneous alignment
of human interactome and phenome networks, to identify pairs
of matched sub-networks, or bi-modules. To obtain meaningful
results, and also to make it computationally feasible, we remove
phenotype links with phenotypic overlap scores <0.5, resulting
in a smaller phenotype network (4256 phenotypes and 30551
edges). The alignment identifies several hundred bi-modules, but
there are significant overlap of nodes and edges between them.
Using the program’s default filtering procedure, we obtain 39 bi-
modules with <80% duplications. Two representative bi-modules
are shown in Figure 2 (see Supplementary Material 1 for all
39 bi-modules). We find that most diseases in the same module
belong to the same category. For example, in Figure 2a, 12 of
the 13 diseases in the module are neurological diseases, and in
Figure 2b, all diseases are metabolic diseases. The enrichment
for specific disease category is not surprising, given that diseases
in the same module share significant phenotypic overlap with
each other. We also find that genes in the same module are
enriched in specific biological processes. For example, the eight
genes in Figure 2a are enriched in neurotransmitter secretion
and its regulation, dopamine/catecholamine metabolic process and
apoptosis, while the six genes implicated in metabolic diseases in
Figure 2b highlight the cholesterol/sterol metabolic and transport
process (Supplementary Table S1 and S2). We also find that these

Fig. 2. Representative bi-modules. Circles are diseases and rectangles are
genes. Orange, red and blue circles indicates neurological, metabolic and
unclassified diseases. Edge between diseases indicates that the two-ended
diseases share significant phenotypic overlap (score >0.5). Edge between
genes indicates physical interaction between protein products of two-ended
genes. Dashed line between gene and disease indicates a causal relationship.
(a) A neurological bi-module. 607822: AD 3, 260540: Parkinson-dementia
syndrome, 104310: AD 2, 600274: Frontotemporal dementia, 607485:
Frontotemporal lobar degeneration with ubiquitin-positive inclusions,
606688: Spongiform encephalopathy with neuropsychiatric features,
606889: AD 4, 168601: Parkinson disease, familial, type 1, 601104:
Supranuclear palsy, progressive, 1, 127750: Dementia, lewy body, 168600:
Parkinson disease, 172700: Pick disease of brain, 600116: Parkinson
disease 2, autosomal recessive juvenile. (b) a metabolic bi-module. 136120:
Fish-eye disease, 144010: Hypercholesterolemia, autosomal dominant,
type b, 143890: Hypercholesterolemia, autosomal dominant, 604091:
Hypoalphalipoproteinemia, primary, 603813: Hypercholesterolemia,
autosomal recessive, 205400: Tangier disease, 245900: Lecithin:cholesterol
acyltransferase deficiency.

genes are enriched in specific molecular function, and cellular
component (Supplementary Material 2). These enriched common
features are consistent with the pathogenesis of diseases in the
module, suggesting that the causative gene network may serve as a
common pathway for the disease family. To see if these observations
are general for bi-modules, we perform gene function enrichment
analysis and disease category enrichment analysis for each bi-
module. Table 1 lists the most enriched category and function (Gene
Ontology biological process terms) for each bi-module. From the
table, we can see that all bi-modules are enriched with a specific
category and a specific function at a significance level of 0.1, and 38
of the 39 bi-modules are further enriched at a level of 0.02, for both
function and category. These results confirm that the identified bi-
modules are biologically meaningful. Again, we can see reasonable
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Table 1. The most enriched category and function

ID Category P-value Function P-value
1 Hematological 0.0E+00 Epidermis development 4.1E—-08
2 Hematological 0.0E+00 Epidermis development 2.8E—-07
3 Muscular 0.0E+00 Muscle development 85E—13
4 Muscular 0.0E+00 Muscle system process 3.1E—-10
5  Muscular 0.0E+00 Muscle development 8.9E — 18
6  Muscular 3.5E—04 Muscle system process 5.0E—12
7 Multiple 5.0E—04 Response to DNA damage stimulus 2.2E — 07
8  Multiple 5.0E—04 Multicellular organismal process 1.7E — 06
9 Neurological 5.4E—10 Regulation of neurotransmitter 1.2E—-05
secretion
10 Neurological 4.8E—06 Mechanosensory behavior 3.9E - 04
11 Neurological 1.7E—02 Peroxisome organization and 2.1E—-16
biogenesis
12 Hematological 5.2E—03 Blood coagulation 2.1E—-10
13 Metabolic 3.3E—07 Cholesterol metabolic process 2.6E —12
14 Muscular 8.3E—04 Synaptic transmission, cholinergic ~ 4.0E — 06
15 Metabolic 3.3E—07 Cholesterol metabolic process 2.6E —12
16  Neurological 9.7E—02 Protein import into peroxisome 3.1E—-07
matrix
17  Dermatological 1.6E — 04 NucleotidE-excision repair 1.0E - 10
18  Ophthamological 1.1E—07 Visual perception 1.0E — 05
19  Renal 23E—09 Visual behavior 2.6E—-03
20 Bone 6.5E—04 Skeletal development 23E-07
21  Muscular 8.3E—04 Synaptic transmission, cholinergic ~ 4.0E — 06
22 Skeletal 24E —03 Regulation of transcription, 9.9E - 05
DNA-dependent
23 Skeletal 24E —03 Skeletal development 23E-07
24 Neurological 9.7E —02 Protein import into peroxisome 3.1E—-07
matrix
25 Bone 3.8E—04 Skeletal development 1.3E-05
26 Muscular 8.3E—04 Synaptic transmission, cholinergic =~ 4.0E — 06
27 Renal 1.3E—08 Visual behavior 2.0E-03
28 Dermatological 1.0E—03 Melanin metabolic process 3.9E - 04
29  Cancer 12E—06 DNA-dependent DNA replication 1.5E-04
30 Dermatological 5.3E—06 Epidermis development 9.2E - 05
31 Connective tissue 5.3E—03 Cell adhesion 9.8E — 02
32 Muscular 34E—04 Muscle system process 1.1IE—02
33  Bone 5.3E—07 Phosphate transport 6.1E — 03
34 Bone 5.3E—07 Phosphate transport 6.1E—-03
35 Connective tissue 2.7E—07 Phosphate transport 22E-07
36 Connective tissue 2.7E—07 Phosphate transport 22E—-07
37 EarNose,Throat 7.8E—03 Sensory perception of sound 8.9E - 03
38 Immunological 23E—05 B cell proliferation 1.IE—-05
39  Cancer 1.3E—02 Positive regulation of DNA 2.6E—-03

metabolic process

correspondences from these results. For example, bi-module 38 is
enriched for ‘Immunological’ disease and the function of ‘B cell
proliferation’. Another interesting relationship is that, both of the two
bi-modules enriched for ‘Renal’ disease (19 and 27) are associated
with genes for ‘visual behavior’.

3.3 Predict disease genes via network alignment

The network alignment identifies modular sub-structure between
human interactome and phenome networks, reduces the complexity,
and facilitates their analysis. One limitation is that these sub-
structures are identified within gene—disease relationships that are

Table 2. Performance at different score threshold

Score threshold 0.50 0.55 0.60 0.65
Phenotypes 4256 3483 2646 1938
Edges between phenotypes 30551 16 862 9840 6027
Cases/Known gene—phenotype links 1149 887 653 474
Match rate 0.488 0.318 0.273 0.21
(no. of cases with matched genes) (561) (282) (178) (100)
Average no. of matched genes 4.5 3.79 33 343
Hit rate 0.576 0.628 0.725 0.79
(No. of cases) (323) 177) (129) (79)
Precision 0.383 0.486 0.623 0.69
(No. of true positive) (215) (137) (111) (69)
Recall 0.187 0.154 0.170 0.146

already known. To make novel discovery, one can incorporate
candidate genes that are assumed to involve in a particular disease
yet to be confirmed, such as those predicted by computational
approaches or those reside in a genomic region identified by
linkage analysis or association studies. The candidate gene—disease
relationships can be treated as inter-network links and some of
them may be retained in bi-modules after the alignment. According
to the characteristics of the bi-module, these retained candidate
genes share many features with, and are closely connected to, other
genes that cause the same or similar diseases. They can explain the
phenotypic overlap between these diseases and thus are likely to be
true disease genes. We test this hypothesis by a benchmark test with
known gene—disease relationships and simulated linkage loci (see
Section 2). We call this novel framework AlignPI, which is short for
Align Phenome & Interactome. The performance of this approach at
different thresholds of phenotypic overlap scores is summarized in
Table 2. For example, at the threshold of 0.6, there are 653 known
gene—disease links tested, of which 178 cases have at least one test
gene matched with the test disease (i.e. retained after alignment),
and the average number of matched genes is 3.3. In 129 (72.5%)
of the 178 loci, the 3.3 gene list contains (hits) the true disease
gene, and the true disease gene can be correctly predicted (retained
in the bi-module with the highest score) in 111 cases, yielding a
relatively high precision of 0.623 (111/178), and an overall recall
rate 0.17 (111/653). In summary, the novel approach greatly reduces
the number of candidate genes (from 109 to 3.3) and is able to find
the disease gene with high precision.

The statistics for thresholds of 0.50, 0.55 and 0.65 are also
provided in Table 2, from which we can further assess the impact
of this parameter on the performance of the proposed framework.
We show that the threshold indeed has impact on the values of
precision and recall. However, one cannot say which threshold is
the best, because the threshold just introduces a tradeoff between
precision and recall—that is, the precision is generally higher for
larger threshold, but the recall will be lower.

We assess the significance of these results by performing a
permutation test. The known gene—disease links are randomly
rewired to remove the modularity in gene—disease relationship. Then
the same benchmark is performed for each randomized dataset.
We repeat this procedure 30 times for the threshold at 0.60,
and summarize the results in Figure 3. We can see that without
modularity the performance drops drastically. Much fewer genes
are found; the precision and recall are much lower; the ability to
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Fig. 3. Comparison of performance for real and randomized gene—disease
links. The number of correctly predicted locus, precision, recall and average
matched genes are shown. In each panel, the left bar indicates results on
known gene—disease links, and the right bar shows the mean and SD of the
results with randomized gene—disease links.

enrich disease genes to a short list is also significantly weakened.
These results confirm that AlignPI is able to explore the modularity
of gene—disease relationship for disease gene discovery.

3.4 Predict novel disease gene

The OMIM database collects 876 genetic loci previously associated
with particular disease but without the causal gene identified. For
example, in 1997, three groups (Bowden et al., 1997; Ji et al., 1997;
Zouali et al., 1997) reported linkage to a 20-cM region of 20q12-
q13.1 for type Il diabetes. Ten years later, we still do not know which
of the 175 genes in this region accounts for the linkage. These genetic
loci are great treasure to be explored for human disease genetics. We
are able to map at least one gene for each of 591 such loci that are
included in our data. The average and median number of genes in
these loci are 337.2 and 268, respectively. The proposed framework
makes predictions for 70 disease loci. Averagely, 7.4 genes are
matched with the test phenotype (See Supplementary Material 3
for all predictions).

Here, we show the example of Late-onset familial Alzheimer
disease (AD) (MIM: 608907), mapped to 19p13.2 (Wijsman et al.,
2004). Two of the 207 genes within this locus, LDLR and ICAMS,
reside in a bi-module that has the highest score (Supplementary
Fig. S1). LDLR (low density lipoprotein receptor) has already been
speculated as an AD gene, because it is a receptor of the AD gene
APOE, and modulates the homeostasis of cholesterol, which itself
appears associated with AD. Previous population studies (Gopalraj
et al., 2005) supported that the LDLR haplotype is associated with
reduced odds of AD.

Compared with LDLR, the link between ICAMS and AD is less
studied. The ICAMS protein (intercellular adhesion molecule 5, or
TLN—telencephalin) is expressed in the somadendritic region of
neurons of the mammalian brain, and may be a critical component
in neuron—microglial cell interactions in the course of normal
development or as part of neurodegenerative diseases (Gahmberg
et al., 2008). It is involved in immune privilege of the brain and acts
as an anti-inflammatory agent (Tian er al., 2008). More directly,
the immunoreactivity of ICAMS is markedly decreased in the brain
of AD patients, particularly in the hippocampal formation (Hino
et al., 1997). Soluble ICAMS5 has been detected in brain ischemia
(Guo et al., 2000), encephalitis (Lindsberg et al., 2002) and epilepsy
(Rieckmann et al., 1998). Further, ICAMS directly binds to two AD

genes: PSEN1 and PSEN2, and other member of the ICAM family
has been implicated in AD (Combarros et al., 2005). These evidences
strongly support a role of ICAMS5 in AD.

3.5 Crohn’s disease: genome-wide screen and
multi-loci effect

The above locus by locus prediction scheme seeks to find from a
single locus a gene that is probably part of an existing bi-module
that contains the disease under investigation. The term ‘existing’ is
used because the bi-module is largely shaped by already established
gene—disease relationships. The novel locus is assumed to contain
only one true disease gene, thus has limited impact in defining bi-
modules.

For complex diseases with heterogeneous origins, there are often
multiple loci identified without the causative genes specified. It is
likely that the implicated genes from these loci interact with each
other and form a novel modular structure/pathway for the disease.
In such a scenario, the locus by locus scheme would fail to find the
causative genes from these loci. To account for the potential effect of
unknown interacting loci, we could fuse candidate genes in multiple
loci as if they came from a single locus so that all genes inside could
be aligned simultaneously and the potential interacting effect could
be automatically considered.

We test this multi-loci scheme for Crohn’s disease (CD). Recently,
a meta-analysis of three genome-wide association studies (Burton
et al., 2007; Libioulle et al., 2007; Rioux et al., 2007) reported
40 susceptibility loci for CD (Barrett et al., 2008). These loci
correspond to 37 distinct chromosome regions (Tables 2 and 3
in Barrett et al.’s paper) containing 6154 genes in total. We first
perform the single locus scheme for each locus and no significant
bi-modules are identified. The result suggests that current functional
(interactome) data does not support the idea that genes in these novel
loci are part of a known CD-related bi-module. However, as pointed
out earlier, there is a possibility that the combination of several genes
in these loci renders some local structure to be significant enough
to become a novel bi-module. To test all possible combinations, we
fuse all 6154 genes in the 37 regions into one region, and align CD
(MIM 266600) with all genes simultaneously. This genome-wide
alignment identifies 48 candidate genes that might be associated
with CD (Table 3). Three of the 48 genes (STAT3, JAK2 and PTPN2,
darkgray rows in Table 3) are inside the critical region defined by
genome-wide association studies (Barrett ez al., 2008), and all three
genes are also proposed as the potential causative genes by Barrett
et al. Two (STAT3 and JAK?2) of these three genes are inside the
same bi-module with the highest score. Beside these three genes,
nine genes (light gray rows in Table 3) are <1 Mb away from the
critical region, such as STAT5A (23-kb upstream), STATSB (60-
kb upstream) and MST1R (30-kb downstream). Of the nine genes
near the critical regions, three (SUMO4, GRB10 and CARD6) are
near a critical region that contains no genes. Besides these candidate
genes that are consistent with genome-wide association studies, we
also identify many other genes that are plausible candidates. Of
particular interest are the other two genes in the most highly scored
bi-module: IL12RB1 and FYN. Further works are needed to verify
the role of these genes in CD pathogenesis. Nonetheless, the above
results not only demonstrate the usefulness of our novel method,
but also illustrate the ability of the method to perform genome-wide
prediction and to handle multi-loci effect.

102

€202 Iudy g| uo sasn Aysieaiun eiquinjod Aq 051 10€/86/1/52/2101He/SoljewLIoul0lq/Wod"dnodlWwspede//:sdiy woly papeojumo(q



Aligning human interactome with phenome

Table 3. Potential CD genes identified

Rank Gene Score Region Critical region  Distance to critical
region

1 STAT3 19.99 17021  34.63-35.34, Inside
37.74-37.95

2 IL12RB1 19.99 19p13  1.05-1.15 >1Mb

3 FYN 19.99 6921 106.52-106.62 >1Mb?

4 JAK2 19.99 9p24 4.94-5.26 Inside

5 PTK2 19.98  8q24 126.60-126.62 >1Mb

6 ERBB2 10.69 17q12  29.57-29.70 >1Mb

7 BRCAL1 4.024 17021  34.63-35.34, 500kb down
37.74-37.95

8 RELA 4.024 11q13  75.80-76.02 >1Mb

9 PRKCD 4.024 3p21 48.73-49.87 >1Mb

10 NR3C1 4.024  5q31 131.44-131.90 >I1Mb

11 SUMO4 4.023 6925 149.54-149.65 110kb down®

12 INSR 4.023  1q23 157.65-157.72 >1Mb

13 HTATIP 4.023 11ql3  75.80-76.02 >1Mb

14 JAK1 4.023  1p31 67.4 >1Mb

15 VAV1 4.023  19p13  1.05-1.15 >1Mb

16 NCOALl 4.023  2p23 27.30-27.77 >1Mb

17 HDAC3 4.023  5q31 131.44-131.90 >1Mb

18 STATSA 4.022 17a21  34.63-35.34, 23kb up
37.74-37.95

19 PDGFRB 4.022 5q33 150.15-150.32 640 kb up

20 CDKNIA 4.022  6p21 32.44-32.79 >1Mb

21 PPP2CA 4.022  5q31 131.44-131.90 >1Mb

22 STAT5B 4.022 17q21  34.63-35.34, 60kb up
37.74-37.95

23 CCND1 4.022 11q13  75.80-76.02 >1Mb

24 CCR5 4.022  3p21 48.73-49.87 >1Mb

25 EPOR 4.022  19p13  1.05-1.15 >1Mb

26 PTMA 4.022  2q37 230.9 >1Mb

27 JAK3 4.022  19p13  1.05-1.15 >1Mb

28 NGFR 4.022 17921  34.63-35.34, >1Mb
37.74-37.95

29 YESI 4.021 18pll 12.73-12.88 >1Mb

30 GRB10 4.021 7pl2 50.03-50.11 510kb down®

31 IFNARI1 4.021 21q22  44.43-44.48 >1Mb

32 MSTIR 4.021 3p21 48.73-49.87 30kb down

33 HSP90AB1 4.021 6p21 32.44-32.79 >1Mb

34 CCRI1 4.021 3p2l 48.73-49.87 >1Mb

35 PTPN2 4.021 18pll  12.73-12.88 Inside

36 TRAFS 4.021 1q32 197.60-197.77 >1Mb

37 PRLR 4.021 5pl13 40.32-40.48 >1Mb

38 HTR2A 4.021 13ql4  43.13-43.54 >1Mb

39 PPP2R5SA 4.021 1q32 197.60-197.77 >1Mb

40 LEPR 4.021  1p31 67.4 >1Mb

41 IL7R 4.021 5pl3 40.32-40.48 >1Mb

42 IFNAR2 4.021 21q22  44.43-44.48 >1Mb

43 IFNGR2 4.021 21q22  44.43-44.48 >1Mb

44 IL12RB2 4.021 1p31 67.4 145kb down

45 OSMR 4.021 5pl3 40.32-40.48 >1Mb

46 IL12B 4.021 5933 150.15-150.32 >1Mb

47 NDUFAI3  4.021 19pl13  1.05-1.15 >1Mb

48 CARD6 4.021 5pl3 40.32-40.48 400kb down®

AThe critical region contains no genes.

4 DISCUSSION

As a proof-of-concept analysis, we have not investigated the impact
of different network alignment algorithms, though there are a dozen
of methods available (Berg and Lassig, 2006; Flannick et al.,
2006; Sharan and Ideker, 2006; Singh et al., 2008). There are
several reasons for the choice of the NetworkBlast algorithm used
here. First, NetworkBlast is one of the pioneering works, and has
successfully led to novel biological discoveries (Suthram et al.,
2005). Second, it is conceptually simple; especially no evolutionary
model is imposed. Most of the methods developed later assume
a dynamic evolutionary history between the aligned networks,
which cannot be explained for the alignment of heterogeneous
networks. Of course it is interesting to see if some of the evolutional
operations (such as node duplication and edge deletion) can be used
to explain the pathogenesis of disease families. Third, the alignment
of NetworkBlast is local, which aims to find matched substructures
between networks. We make use of this capability to identify bi-
modules. Many later-developed methods perform global alignment,
thus are not appropriate here.

Recently, a number of network-based methods have been
proposed to predict or prioritize disease gene candidates (Ala et al.,
2008; Franke et al., 2006; Koller et al., 2008; Lage et al., 2007; Oti
etal.,2006; Wu et al., 2008). Though it is not our primary concern to
develop a disease gene prediction method that outperforms existing
ones, the good performance of the novel AlignPI framework renders
it as one of the top methods in this field. Of these network-based
methods, two are of particular interest: the Bayesian predictor
proposed by Lage et al. (2007) and our previous regression model
CIPHER (Wu et al., 2008). These two methods are based on the
same types of data as this study: phenotype similarity and protein
interaction. In general, the precision of AlignPl is slightly better than
CIPHER, though the recall is lower. CIPHER has a precision ranges
from 0.47 to 0.66, and a recall ranges from 0.3 to 0.5, while AlignPI
can achieve a precision of 0.69 at the score threshold of 0.65, where
the recall is 0.15. As a comparison, the precision for the Bayesian
predictor ranges from 0.23 to 0.65, and the recall ranges from 0.13
to 0.23.

Certainly, there are several limitations of this study. First,
there are imprecision and subjectiveness in quantifying phenotypic
overlap score. The standardization and quantification of phenotypic
description is another issue that is out of the scope of this study
(Biesecker, 2005). Second, though we have shown that the alignment
algorithm designed for protein networks is also effective in aligning
phenome and interactome networks; it is still worthwhile to design
specific algorithms for this problem. For instance, the phenotype
network is a weighted complete graph (all pairs are connected),
while the protein network is binary and sparse. Specific algorithms
are needed to address the alignment problem under this scenario.

Our framework could also be applied to model organisms,
providing that there are systematic phenotype similarity and gene
interaction data, for example, in Caenorhabditis elegans (Gunsalus
et al., 2005). Similarly, the framework could also be applied to
other labeling problems, such as protein function prediction, as
there are also observations of the correlation between protein
functional distance (semantic similarity of GO annotations) and
network distance (Sharan et al., 2007).
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