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Cancer Gene Prediction 
Using a Network Approach

Xuebing Wu and Shao Li

11.1  IntroductIon
Cancer is a genetic disease (Vogelstein and Kinzler 2004). Decades of research in molecular 
genetics have identified a number of important genes responsible for the genesis of various 
types of cancer (Futreal et al. 2004) and drugs targeting these mutated cancer genes have 
brought dramatic therapeutic advances and substantially improve and prolong the lives of 
cancer patients (Huang and Harari 1999). However, cancer is extremely complex and het-
erogeneous. It has been suggested that 5% to 10% of the human genes probably contributed 
to oncogenesis (Strausberg, Simpson, and Wooster 2003), while current experimentally 
validated cancer genes only cover 1% of the human genome (Futreal et al. 2004), suggesting 

contentS
11.1 Introduction 191
11.2 Molecular Networks and Human Diseases 192
11.3 Network Approach for Cancer Gene Prediction 195

11.3.1 Prioritize by Network Proximity 196
11.3.1.1 Proximity to Known Disease Genes of the Same Disease 196
11.3.1.2 Proximity of Candidate Gene Pairs: 

Enabling de Novo Discovery 200
11.3.2 Phenotype Similarity-Assisted Methods 200

11.3.2.1 Calculating and Validating Phenotypic Similarity 200
11.3.2.2 Modeling with Molecular Network and Phenotype Similarity 202

11.3.3 Prioritize by Network Centrality 205
11.3.3.1 Centrality in a Context-Specific Gene Network 205
11.3.3.2 Centrality in a Genomic-Phenomic Network 205

11.3.4 Other Methods 206
11.4 Discussion 207
Acknowledgments 208
References 208



192    ◾    Xuebing Wu and Shao Li

that there are still hundreds or even thousands of cancer genes that remain to be identified. 
For example, in breast cancer, known susceptibility genes, including BRCA1 (Miki et al. 
1994) and BRCA2 (Wooster et al. 1995), can only explain less than 5% of the total breast 
cancer incidence and less than 25% of the familial risk (Oldenburg et al. 2007). The same 
challenge is also faced by other types of cancer and other complex diseases, such as diabetes 
(Frayling 2007) and many brain diseases (Burmeister, McInnis, and Zollner 2008; Folstein 
and Rosen-Sheidley 2001). There is a long way to go from changes in genetic sequence to 
visible clinical phenotypes. The complex molecular interaction networks, together with 
environmental factors, further lower the penetrance of a single causal gene and complicate 
the relationship between genes and diseases. This high complexity and low penetrance 
might explain why so many disease genes remain unidentified.

Traditional gene mapping approaches, such as linkage analysis and association studies, 
have limited resolution to localize the causal genes in the genome, and the resultant region 
often contains hundreds of candidate genes (Altshuler, Daly, and Lander 2008). The func-
tional testing and validation of causative genes are time consuming and laborious. The prior-
ity of candidate genes is usually determined by expert judgment based on the gene’s known 
functions (Pharoah et al. 2007), which are often biased and limited by the scope of the 
expert. Alternatively, with the increasing availability of genome-wide sequence, genomics, 
proteomics, and epigenomics data, computational methods are exploited to predict and pri-
oritize disease genes (Oti and Brunner 2007; Zhu, Gerstein, and Snyder 2007), significantly 
reducing the number of candidate genes for further testing. Computational prediction and 
prioritization is complementary to genetic mapping, in terms of integrating existing knowl-
edge on disease biology and relatively unbiased whole genome measurements.

More recently, large-scale molecular interaction network data have become available, 
and it turns out to be particularly powerful for disease gene prediction when used alone 
(Kohler et al. 2008; Oti et al. 2006) or combined with other data sources (Karni, Soreq, and 
Sharan 2009; Lage et al. 2007; Mani et al. 2008; Wu et al. 2008). Molecular interaction net-
works depict the basic skeleton of cellular processes, and network analysis has the ability to 
model the complex interactions among multiple genes and their higher-level organizations 
(Barabasi and Oltvai 2004; Han 2008; Zhu, Gerstein, and Snyder 2007). In this chapter, we 
will focus on network-based approaches for cancer gene prediction. Many of the methods 
discussed here are designed for general disease instead of cancer. Nonetheless, they can be 
applied to predict cancer genes as a special case, and most of these network-based methods 
have been demonstrated by applying them to various types of cancer.

11.2  MoLecuLar netWorkS and HuMan dISeaSeS
Before going into the details of network-based gene prioritization methods, we will briefly 
introduce some basic concepts about molecular networks, the data sources and tools for build-
ing networks, and the working principles for network approaches in predicting disease genes.

Network is a simple but efficient abstraction of biological systems (Barabasi and Oltvai 2004). 
Nodes/vertices in a molecular network represent biomolecules, such as genes, proteins, and 
metabolites. Edges/links between nodes indicate physical or functional interactions, includ-
ing transcriptional binding, protein-protein interaction, genetic interaction (such as synthetic 
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lethal), biochemical reactions, and many others. An edge on a network (if it happens in the 
cell) shows that two molecules are functionally related with each other, and the distance on a 
network is correlated with functional similarity (Sharan, Ulitsky, and Shamir 2007). Network/
graph theory provides multiple definitions and tools to measure the distance/proximity between 
two nodes on a network, which makes network analysis particularly suitable to the quantitative 
modeling of gene-gene and gene-disease relationships (see Box 11.1 for basic graph concepts).

Box 11.1  Basic graph concepts

a graph is a pair G(V,e), where V is a set of nodes (or vertices) and e is a set of edges (or links, 
or interactions) connecting pairs of nodes. on molecular interaction networks, the nodes 
represent molecules such as genes or proteins, and the edges represent interactions such as 
protein-protein interaction, transcriptional binding between protein and dna.

a graph can be represented by an adjacent matrix a, where Aij = 1 if there is an edge 
between nodes i and j; otherwise Aij = 0.

a path from node a to B is a sequence of nodes started with a and ended with B, such 
that from each of its nodes there is an edge to the next node in the sequence.

the length of a path is the number of edges in the path.
the distance of two nodes is usually defined as the length of the short path between the 

nodes. More complex definitions of graph distance are discussed in the main text.
the kth-order neighbor of a node is the nodes whose distance from it is k.
the centrality of a node measures how centrally a node is located in a given graph. three com-

monly used centrality measure are degree, betweenness, closeness, and eigenvector centrality. 
the degree of a node is the number of edges it is connected with. 
the eigenvector centrality is a weighted version of the degree centrality, such that xi of 

node i is proportional to the sum of the centralities of its neighbors: 

 
x A xi ij j

j

n

= −

=
∑λ 1

1

Let the vector x =( x1, x2, ..., xn) be the centralities of the nodes then we have 

 λx Ax=

where x is an eigenvector of the adjacency matrix A with eigenvalue l. theoretical results 
show that there is only one eigenvector x with all centrality values non-negative and this is 
the unique eigenvector that corresponds to the largest eigenvalue l. eigenvector centrality 
assigns each node a centrality that not only depends on the quantity of its connections, but 
also on their qualities.

the closeness of a node measures the centrality of a node based on how close it is to 
other nodes in the network. It can be calculated by inverting the sum of the distances from it 
to other nodes in the network.

the betweenness of a node is the number of shortest paths between other nodes that run 
through the node in interest. Betweenness centrality characterizes the control of a node over 
the information flow of the network.
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Until now, widely used large-scale human gene/protein networks have been generated 
mainly by four approaches: high throughput technology for large-scale screen of genetic 
interaction or protein-protein interaction, manual curation of high-quality interaction 
data from published small-scale experiment results, automatic text mining to extract gene 
interactions from the published literature, and computational prediction by integrating 
multiple genomics data. Generally, high-throughput technology such as yeast-2-hybrid 
(Fields and Song 1989; Fields and Sternglanz 1994) can yield relatively unbiased protein 
interaction data, but the false positive rate can reach 50% (Sprinzak, Sattath, and Margalit 
2003; von Mering et al. 2002). In addition, though the interactome (a full list of interactions) 
for species like yeast (Ito et al. 2001), worm (S. Li et al. 2004), and fly (Giot et al. 2003) have 
been extensively mapped using high-throughput technology, data generated in this way for 
human (Ghavidel, Cagney, and Emili 2005; Rual et al. 2005) composes only a small part 
of the known human interactome data. On the other hand, the most reliable experimental 
data comes from manual curation of interaction data reported by traditional small-scale 
experiments, and most of these data has been included in manually curated databases such 
as HPRD (Peri et al. 2003), BIND (Bader and Hogue 2003), and BioGRID (Breitkreutz et al. 
2008). Occasionally traditional pathway-based databases are also used, including KEGG 
(Kanehisa and Goto 2000) and Reactome (Vastrik et al. 2007). Despite the intensive effort 
in mapping the human protein network, the current human interactome is far from com-
plete (Hart, Ramani, and Marcotte 2006). Automatic literature mining techniques have 
also been developed to identify putative interacting relationships between human genes/
proteins described in the published biomedical literature, such as the GENEWAYS system 
(Rzhetsky et al. 2004). Literature mining also has the advantage that is allows the construc-
tion of context-specific networks, such as the prostate cancer specific gene network (Ozgur 
et al. 2008) and angiogenesis network (S. Li, Wu, and Zhang 2006). In the LMMA (S. Li, 
Wu, and Zhang 2006) approach, we have also shown that the systematic integration of 
microarray data significantly refines the literature mined network and yields more biologi-
cal insights. Finally, multiple computational approaches (Franke et al. 2006; Jansen et al. 
2003; Lage et al. 2007; Rhodes et al. 2005; Xia, Dong, and Han 2006) have been developed 
to predict a comprehensive human interactome map, usually by integrating a number of 
unbiased genome-wide annotation data, such as sequence, expression, functional annota-
tion, known interaction data, and many others. Among these datasets, homologous map-
ping is commonly used to transfer protein interactions from other organisms to human 
by sequence conservation. Typical high-quality interaction databases for other organisms 
include: BioGrid (Breitkreutz et al. 2008), BIND (Bader and Hogue 2003), MIPS (Mewes 
et al. 2004), DIP (Salwinski et al. 2004), MINT (Chatr-aryamontri et al. 2007), and IntAct 
(Kerrien et al. 2007). STRING (von Mering et al. 2005) and OPHID (Brown and Jurisica 
2005) are two of the widely used databases hosting predicted interactions.

With all these network data available, studies on model organisms have shown that cen-
tral positions on the network implicate important roles in cellular processes. For example, 
in yeast, the number of partners of a gene is positively correlated with lethal phenotypes 
(Jeong et al. 2001). With the increasing availability of human protein interaction data, 
network analysis has also shed light on human diseases. For example, consistent with the 
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observation from yeast, human disease genes tend to have higher network centrality, such 
as higher degrees, compared to nonessential and nondisease genes (Feldman, Rzhetsky, 
and Vitkup 2008; Goh et al. 2007; J. Xu and Li 2006), and cancer genes are found to be 
even more central than other disease genes (Goh et al. 2007; Jonsson et al. 2006). Besides, 
consistent with the long-held assumption that genes that are closely related are more likely 
to cause the same or similar diseases, network analysis shows that genes causing the same 
or similar diseases are likely to interact directly or indirectly with each other (Lim et al. 
2006; Oti et al. 2006; Oti and Brunner 2007; van Driel et al. 2006). For example, Lim et al. 
(2006) show that many ataxia-causing proteins share interacting partners and form a small 
tightly connected subnetwork. Recent genome-wide cancer mutation screen studies sug-
gest that, though ~80 mutations can be found in a typical cancer, they tend to fall into a 
few functional pathways (Wood et al. 2007). The functional relatedness of genes causing 
similar diseases seems to be very general for human diseases, and network analysis pro-
vides powerful tools to fully exploit its potential in human disease study. Recently various 
network-based approaches have emerged to predict disease genes based on the observa-
tions described above, generally achieving much better performance than traditional dis-
ease gene prediction approaches.

11.3  netWork aPProacH for cancer Gene PredIctIon
For clarity we first give the typical settings for a network-based disease gene prediction 
method (Figure 11.1). Given a list of N candidate genes which is assumed to contain at least 
one disease gene, the goal is to pick out the true disease gene or to rank it at top Mi, where 
M is much smaller than N. The candidate genes can be genes within a linkage interval 
having been associated with the disease under study. Or, if there is no genetic mapping 
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fIGure 11.1 Sketch map of network-based candidate gene prioritization and prediction. A list 
of candidate genes such as those in a linkage interval or all the human genes are mapped onto a 
human gene/protein network, and if applicable, known disease genes and other information (such 
as sequence characteristics and mRNA expression) are also mapped onto the network. A scoring 
scheme is used to score each candidate gene based on current data and output a rank list of all can-
didate genes. Genes ranked above a certain position is predicted as disease-causative. 
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information, one can simply use the entire human genome as the candidate list. Next, all 
candidate genes are mapped to a human gene/protein network, the construction of which 
is described in the previous section. If applicable, known disease genes and other informa-
tion are mapped to the network too. After that, a scoring scheme scores each candidate 
gene according to its relative position on the network and additional information. The 
score is assumed to reflect the probability of the candidate gene to cause the disease under 
study, given the observed data sources. Finally, all candidate genes are ranked according 
to the score, and the top 1 or top M genes are predicted to be disease causing. The pre-
dictability of this score or the performance of the proposed approach is often assessed by 
cross-validation with known gene-disease relationships (the ability to rediscover known 
disease genes).

The scoring scheme is the key to a disease gene prediction method. In the follow-
ing section, we will review different scoring functions used by different methods. To be 
clearer, we group these methods by the basic principles underlying their scoring schemes 
(Table 11.1).

11.3.1  Prioritize by network Proximity

The common principle underlying all methods in this category is “guilt-by-proximity,” 
that is, genes that lie closer to each other on the network are more likely to lead to the same 
disease. If some genes are already known to be related with the disease under study, then 
basically one can use the inverse of the distance (proximity) to these disease genes as the 
score. Otherwise, distance between candidate pairs is used. The methods described below 
differ in the way they define the distance measure and how the distance is combined with 
other information to rank candidate genes.

11.3.1.1  Proximity to Known Disease Genes of the Same Disease
Roughly about half of the diseases in the OMIM database (McKusick 2007) have at least 
one gene known to be involved in the particular disease. For these diseases, the most 
straightforward way to score and rank candidate genes is to use the proximity to known 
disease genes as the measure of the disease causing probability. If a candidate is more 
closely related with a known disease gene, it is more likely to be a disease gene too; there-
fore, it should get a higher score. If multiple disease genes are already known, then the 
final score will be the sum of scores across all known disease genes. This procedure can 

disease signal and this signal is propagated along paths on the network to other nodes, and 
the signal gradually damps as it travels to more distant nodes. Now the problem is how to 
define distance between two nodes in a network. Three types of distance measure can be 
found in disease gene finding approaches: direct neighbor, shortest path length, and global 
distance defined by diffusion kernel or random walk.

11.3.1.1.1 Direct Neighbor In this type of measure, nodes that are directly connected have 
a distance of 1; otherwise they have a distance of infinity. Approaches employing this mea-
sure are actually doing neighbor counting: candidates with more neighbors causing the 

be viewed as a propagation of disease  signal:  known disease gene serves as the source  of 
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-
didate genes as those that directly interact with known causative genes of the same disease, 
and they validate this method against 289 diseases with at least two known disease genes 
in OMIM. Though the performances vary for different protein network datasets, all are 
much better than random selection. By applying this method to diseases with both known 
genes and uncharacterized loci, they are able to predict 300 novel disease candidate genes, 
of which 10% are confirmed by literature evidence outside OMIM. The same strategy is 
used in the CPS method in the study of George et al. (2006). When benchmarking with 
protein interaction data from OPHID, the method has a sensitivity of 0.42, a specificity of 
1.0. In another study on cancer gene prediction, Aragues, Sander, and Oliva (2008) define 
the cancer linker degree (CLD) of a gene as the number of its neighbors that are known to 
be involved in cancer. They find that CLD of a gene is a good indicator of the probability 
of being a cancer gene.

taBLe 11.1 A Summary of Network-Based Disease Gene Prediction Methods
Method Disease Tested Network Data Sources

Proximity-based
 Direct neighbor
 Oti et al. 2006 General HPRD, DIP
 CPS (George et al. 2006) General OPHID
 Aragues et al. 2008 Cancer HPRD, DIP, MIPS, MINT, BioGrid, IntAct
 Furney et al. 2008a Cancer DIP, MIPS
 ENDEAVOUR (Aerts et al. 2006) General BIND
 Shortest path
 Krauthammer et al. 2004 Alzheimer’s disease Literature mining by GENEWAYS
 Liu et al. 2006 Alzheimer’s disease Inferred from multiple dataset
 Radivojac et al. 2008 General HPRD, OPHID
 Prioritizer (Franke et al. 2006) General Inferred from multiple dataset
 Diffusion kernel
 Kohler et al. 2008 General HPRD, BIND, BioGrid, STRING, DIP, 

IntAct
 Chen et al. 2009 General HPRD, BIND, BioGrid
Similarity-assisted
 Ala et al. 2008 General Coexpression
 Miozzi et al. 2008 General Coexpression
 Lage et al. 2007 General MINT, BIND, IntAct, KEGG, Reactome
 CIPHER (Wu et al. 2008) General HPRD, OPHID
 AlignPI (Wu et al. 2009) General HPRD
Centrality-based
 Ozgur et al. 2008 Prostate cancer Literature mining by GIN (Ozgur et al. 2008)
 Ortutay and Vihinen 2009 Immunodeficiency HPRD
 Gudivada et al. 2008 Cardiovascular disease Genomic-phenomic Semantic web
Others
 Mani et al. 2008 Cancer B-cell interactome, Co-expression
 Karni et al. 2009 General HPRD

disease are more likely to be related to the disease.  For example, Oti et al. (2006) predict can
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data with protein sequence conservation, protein domain, gene structure, and regulatory 
data, Furney et al. train Bayesian classifiers to prioritize proto-oncogenes and tumor sup-
pressor genes. For protein interaction data, they use the number of interactions and the 
number of interactions with cancer genes, assuming that cancer genes have higher degree 
and are more likely to interact with other cancer genes. The study by Furney et al. is a typi-
cal data integration strategy for gene prioritization. First, a number of data sources/evi-
dences are collected for each candidate gene, and then some machine learning algorithms 
are used to integrate these features and generate ranking scores. Often data sources are 
explored in a relatively simple fashion. Another example is provided by Aerts et al. (2006). 
In this study, up to 12 data sources, including protein interaction data in the database 
BIND (Bader and Hogue 2003), are used separately to calculate the similarity between 
training genes (known disease genes) and candidate genes, yielding 12 ranking lists. A 
rank aggregation algorithm based on order statistics is used to combine these rank lists 
into a single rank. Again, only direct neighbors are considered for protein interaction data, 
but instead of neighbor counting, Aerts et al. use the number of common neighbors as the 
similarity score between known disease genes and candidate genes.

11.3.1.1.2 Shortest Path Length The direct neighbor strategy has some limitations. It is 
quite possible that two functionally related genes do not interact directly with each other. 
For example, they may function in different steps of a signaling cascade, yet still lead to the 
same disease (Brunner and van Driel 2004; Wood et al. 2007). The direct neighbor strategy 
is more likely to be true for cases where two genes function in the same protein complex 
(Lage et al. 2007), instead of a pathway. To make use of indirect interactions, one can take 
higher-order neighborhoods into consideration. The shortest path length measure of dis-
tance considers the influence between nodes that are reachable. The length of the short-
est path between two biomolecules in molecular interaction networks are assumed to be 
related with the speed of information communication and/or the strength of the functional 
association between the two molecules. Thus, the shortest path length is a good measure 
of functional relatedness, as demonstrated by its correlation with functionally similarity 
(based on Gene Ontology) (Sharan, Ulitsky, and Shamir 2007). One of the pioneering works 
to apply shortest path analysis to gene prioritization is from the Rzhetsky group, with a 
method called Molecular Triangulation (Krauthammer et al. 2004). They use an automatic 
literature mining system to construct a network around four Alzheimer’s disease (AD) 
genes, and then calculate the shortest path length between all other nodes to these four seed 
genes. The statistical significance of the distance serves as the final score. The method per-
forms well in predicting additional AD gene candidates identified manually by an expert. 
This approach was later extended by Liu et al. (2006) by applying shortest path length scor-
ing on a brain-specific gene network, and based on the same four AD seed genes, they were 
able to rank 37 AD associated genes within the top 46 high-scoring genes.

Like the direct neighbor approach, shortest path analysis has also been used in data 
integration methods to transform protein interaction data into feature sets. Radivojac et al. 

Similar results are obtained by Furney et al. (2008a). By integrating  protein interaction 
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(2008) integrate human protein interaction network, protein sequence, function, physico-
chemical and structural properties to train support vector machines that are able to pre-
dict gene-disease associations with relatively high accuracy. Protein network data are used 
to calculate the distance between candidate proteins and disease causing proteins, which 
serves as one important feature for the classifier. A case study for leukemia is given in this 
study. The training set contains 80 genes associated with leukemia, which are manually 
curated from OMIM, Swiss-Prot (Boeckmann et al. 2003), and HPRD. Cross-validation 
shows an accuracy of 77.5% and 15 novel genes are predicted to be associated with leu-
kemia. The authors are able to find from the published literature strong association for 8 
of the 15 predictions. One limitation of this approach is that the SVM requires at least 10 
known disease-related genes to train the model and to predict novel disease genes.

11.3.1.1.3 Global Distance Measure The problem with shortest path length is that it consid-
ers only one of the shortest paths, ignoring the contribution of other shortest paths and 
other paths with longer length. Most of the time there will be more than one path and 
even more than one shortest path between two nodes, and the existence of these paths 
showing additional relatedness between two genes. Another defect is that the shortest 
path length lacks resolution: the lengths are integers and the longest path in a biological 
network is typically very small, due to the small world property of biological networks 
(Jeong et al. 2000; Watts and Strogatz 1998). The so-called global distance measure, mainly 
diffusion-type distance measure overcomes these drawbacks by considering the topology 
of the entire network (see illustrations in Kohler et al. 2008). The diffusion kernel K of a 
graph G is defined as K = e−βL, where β controls the magnitude of the diffusion. The matrix 
L is the Laplacian of the graph, defined as D − A, where A is the adjacency matrix of the 
interaction graph and D is a diagonal matrix containing the nodes’ degrees. The inverse 
Laplacian takes into account all powers of diffusion and thus incorporates all paths along 
the network. Kohler et al. (2008) propose using the following scoring function to quantify 
the association between a candidate gene j and a disease:

 
S Kj ij

i

=∑
where i represents known disease genes. By applying this approach and another simi-
lar random walk approach to an assembled human protein-protein interaction network, 
they show that methods based on global distance measure significantly outperform those 
based on local distance measure and non-network approaches. This result is consistently 
observed for monogenic disorders, polygenic disorders, and cancer. Similar random walk 
algorithms have been widely used in social- and Web-network analysis to find important 
nodes (persons or web pages) on the network, such as the PageRank algorithm (Brin and 
Page 1998) used by Google to rank web pages. By fixing known disease genes as root nodes, 
some of these algorithms have recently been exploited to prioritize disease genes based on 
protein network (Chen, Aronow, and Jegga 2009).
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11.3.1.2  Proximity of Candidate Gene Pairs: Enabling de Novo Discovery
All the approaches discussed above require at least one disease gene known to cause the 
disease under study, which covers only about half of human diseases. For genetically unrec-
ognized diseases, these methods do not work. We call methods that do not rely on known 
disease genes of the same disease de novo methods. To enable de novo prediction, one has 
to add some other disease-specific information, such as disease similarity, to use genes caus-
ing similar disease as a surrogate. We will discuss this type of information later. Here we 
introduce another method, called Prioritizer (Franke et al. 2006), which does not rely on 
such phenotype information. Prioritizer assumes the disease-specific information is pro-
vided when the candidate genes are available, for example, from a linkage locus associated 
with the disease. Prioritizer takes at least two genomic regions as input, each containing 
many candidate genes. Each of the regions is supposed to contain at least one gene causing 
the disease under study. Assuming the two disease genes should be close to each other on 
the network, the scoring scheme is designed such that a candidate gene has a higher score 
if it has smaller distance to genes in another region. A permutation test is introduced to 
correct the topology differences and yield a p-value based on which all candidate genes 
are prioritized. Theoretically Prioritizer can be used in de novo discovery of disease genes 
when multiple genetic regions are given, and this is demonstrated by a case study on breast 
cancer. Ten 100-gene artificial loci are constructed around 10 known breast cancer genes, 
and Prioritizer is able to rank 2 to 4 of the 10 breast cancer genes in the top 10 of each locus, 
when using different gene networks. When the candidate genes in a region are fixed to some 
known disease genes, this method is essentially the shortest path analysis discussed in the 
above section. Another method employing this principle is CPS (George et al. 2006), which 
predicts genes directly interacting with genes from another locus as disease genes.

11.3.2  Phenotype Similarity-assisted Methods

A natural generalization of the “guilt-by-proximity” principle is that genes causing similar 
(instead of the same) diseases are likely to be closely related. The additional information 
provided by similar diseases enables de novo prediction of causative genes for diseases 
without known causative genes, and will also improve the performance for those with 
known causative genes. Then two questions remain to be addressed: (1) how to define and 
compute the similarity between diseases, and (2) how to incorporate disease similarity into 
disease gene prediction approaches.

11.3.2.1  Calculating and Validating Phenotypic Similarity
A disease can be represented by a set of terms describing its clinical symptoms, namely 
phenotypes. The phenotypic similarity between two diseases quantifies the overlap or 
semantic similarity between two sets of terms (Brunner and van Driel 2004; Oti and 
Brunner 2007). Four different approaches (Care et al. 2009; Lage et al. 2007; Robinson et al. 
2008; van Driel et al. 2006) have been proposed to calculate the phenotypic similarity for 
diseases in OMIM.

van Driel et al. (2006) use a text mining technique to map OMIM disease records to 
a set of standardized terms, that is, terms defined in MeSH (Medical Subject Headings; 
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Lowe and Barnett 1994), and then a vector is created for each disease, with each element in 
the vector representing the number of times the term occurs in the disease record. After 
adjusting for the hierarchical relationship between different terms, the relative frequency 
of terms, and size of each record, each disease is represented by a high dimension feature 
vector of weighted MeSH terms. The similarity between any two diseases is then calculated 
as the cosine of the angle between the two vectors. Essentially, the method amounts to 
detecting standardized terms that are (1) common to the description of both diseases, and 
(2) do not occur too frequently among all diseases such that they are informative about the 
disease under study. Lage et al. (2007) propose a similar method, and the major difference 
is, instead of using MeSH as the standard vocabulary, they use UMLS (the unified medical 
language system; Bodenreider 2004), a more general system containing MeSH and several 
other vocabularies.

Different approaches have been proposed to evaluate the quality of the calculated dis-
ease similarity data. Instead of directly assessing the quality of disease similarity, van Driel 
et al. (2006) correlated the similarity with the functional relatedness between disease genes. 
They find that the genes that lead to more similar diseases are more likely to have similar 
protein sequences, more likely to interact with each other, and more likely to share Pfam 
domains and Gene Ontology annotations, thus demonstrating that the phenotypic simi-
larity reflects real biological knowledge. Lage et al. (2007) directly evaluate the phenotypic 
similarity score by comparing it with a putative golden positive set of ~7000 disease pairs. 
A disease pair is included in this set if one disease is referred to in the text record of another 
disease. One hundred disease pairs randomly selected from the putative golden positive set 
are subject to expert OMIM curators’ evaluation, and over 90% of them are judged to have 
a high degree of phenotypic overlap. The phenotypic similarity is then evaluated by calcu-
lating the percentage of disease pairs attaining at least a given similarity threshold pres-
ent in the putative golden positive set. Recently, Care et al. (2009) proposed to use a more 
stringent golden putative set by only accepting disease pairs with reciprocal references, 
resulting in a set of about 4000 disease pairs. However, this set has not been evaluated by 
expert OMIM curators. Interestingly, based on this stringent disease pair set, Care et al. 
find that the mapping of free text to standard vocabulary is not necessary, as a simple word 
counting method outperforms the UMLS based method. However, if the disease ID is also 
counted as terms, the evaluation procedure will prefer the word counting method, thus the 
comparison is biased. Further studies are needed to exclude this bias and show whether 
simple word counting is also more powerful than MeSH and other standard vocabularies. 
All these three phenotypic similarity datasets (Care et al. 2009; Lage et al. 2007; van Driel 
et al. 2006) have been used in disease gene prioritization, and all show significant improve-
ment compared to methods that do not employ phenotypic similarity data.

More recently, the Human Phenotype Ontology (HPO) was created to standardize the 
annotation of OMIM diseases (Robinson et al. 2008). Ontology is a special type of stan-
dard vocabulary that is particularly suited for knowledge representation and computa-
tion, and the usefulness of ontology in biology is evidenced by the great success of Gene 
Ontology (GO) (Ashburner et al. 2000). GO annotation is now widely accepted as the rep-
resentation of gene functions, and various methods have been developed to calculate the 
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functional similarity between genes using GO annotations (T. Xu, Du, and Zhou 2008). 
Most of these methods can be applied to calculating disease phenotypic similarity using 
HPO, because HPO is designed to have the same structure as GO (Robinson et al. 2008). 
In fact, along with the publication of HPO, Robinson et al. (2008) also applied a classic 
approach (Lord et al. 2003) for calculating gene functional similarity to generate a HPO-
based phenotypic similarity for 727 OMIM diseases, which have been classified into one 
of 21 physiological disorder classes (Goh et al. 2007). Though this similarity data has not 
been evaluated using the same methods as the UMLS-based disease similarity data, the 
HPO-based disease similarity network shows a pattern consistent with the physiological 
disorder classes. Compared to MeSH and UMLS, HPO has several potential advantages 
for computational phenotype analysis. First, HPO is specifically designed for the needs of 
describing human hereditary diseases and their phenotypes, and second, as demonstrated 
by GO, the ontology framework may be more powerful in knowledge representation and 
computation. Finally, instead of annotating diseases using automatic text mining, HPO 
experts have manually annotated almost all the OMIM diseases. It is expected that the 
phenotypic similarity calculated based on HPO will provide more strong support for dis-
ease gene prioritization, though so far no such study is available.

11.3.2.2  Modeling with Molecular Network and Phenotype Similarity
The hypothesis underlying most if not all similarity-assisted methods is that similar diseases 
are caused by functionally related genes. Methods of this type differ in the way to model such 
correlation and how they incorporate phenotypic similarity information into the model.

11.3.2.2.1 Group Diseases by Similarity The simplest way to exploit phenotypic similar-
ity perhaps is to treat diseases showing a certain level of similarity as the same disease, 
thus more known disease genes are available for model training or seed propagation. For 
example, van Driel et al. (2006) have shown that, for the MeSH-based similarity score, bio-
logically meaningful relationships were mostly detected in disease pairs with a similarity 
score equal to or greater than 0.4. Ala et al. (2008) use this phenotype similarity data, and 
group diseases according to this threshold. They then employ essentially a neighbor count-
ing strategy, together with a human-mouse conserved coexpression network, to predict 
disease genes. A similar procedure has been applied to a different dataset (Miozzi et al. 
2008).

11.3.2.2.2 Weighted Neighbor Counting Lage et al. (2007) propose a Bayesian model to 
systematically integrate the UMLS-based similarity score with a weighted human protein-
protein interaction network. Basically, for each candidate gene, all the direct neighbors 
are annotated with, if any, diseases associated with them, and weighted by the similarity 
to the disease under study. At the same time, all the edges are weighted with a confidence 
score. Based on these observed data and a uniform priori, the posterior probability of the 
candidate gene to be associated with the disease under study is obtained via the Bayesian 
formula. This is essentially a weighted version of neighbor counting: the neighbors of the 
gene under consideration are weighted by the confidence of the edges (protein-protein 
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interactions), and the similarity between the disease they lead to and the disease under 
study. The more reliably a gene is connected to neighbors associated with diseases similar 
to the disease under study, the more likely the gene is involved in the disease. When apply-
ing this approach to 669 genetic loci with known disease genes, they are able to rank the 
disease gene as the top candidate in 298 loci, significantly outperforming all other methods 
compared in this study. As the first study to incorporate phenome-wide disease similarity 
information into disease gene prioritization, it clearly demonstrates the benefits of phe-
notype data. They then apply the method to 870 genetic loci without the known causative 
genes and predict a list of 113 candidates for 91 loci, 24 of which are likely to be true predic-
tions according to the recently published literature.

11.3.2.2.3 Prioritize by Interactome-Phenome Correlation Using the same type of data (phe-
notypic similarity and protein networks), we have proposed a novel method, CIPHER 
(Correlating protein Interaction network and PHEnotype network to pRedict disease 
genes), with drastically different formulation (Wu et al. 2008). We choose to directly model 
the correlation between disease phenotypic similarity and gene functional relatedness, and 
use the correlation to prioritize candidate genes. We hypothesize that the phenotypic simi-
larity between any two diseases p and p’ can be explained by the proximity of their disease 
genes on the network:

 
S C Lp p p p i i i

ii

, , ,exp′ ′
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where Cp and βp,i are constants for a fixed disease p, and i and i’ indicate disease genes of p
and p’, respectively. Li,i’ is the graph distance between gene i and i’, which is transformed 
into proximity by a Gaussian kernel function. The distance measure can be any of the 
direct neighbor (CIPHER-DN), shortest path (CIPHER-SP), or diffusion kernels.
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is defined as the proximity between gene i and disease p′ by summing the gene proxim-
ity over all known disease genes of p′. This is the classical measure used in shortest path 
analysis to prioritize candidate genes (Franke et al. 2006; Krauthammer 2004), which do 
not rely on the phenotypic similarity information. Instead, we choose to evaluate the abil-
ity of gene-disease proximity in explaining the disease similarity for a pair of gene and 
disease (i, p). We create a phenome-wide vector for each gene i: Φ Φi i p= ′( ),,  and each dis-
ease p: S Sp p p= ′( ),,  with p′ varying for all human diseases. Then we use the correlation 
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between these two vectors as the final score for association between gene i and disease p. 
The usefulness of this score is validated by both systematic large-scale cross-validation, 
and a case study for breast cancer. We have shown that the proposed CIPHER approach 
can accurately pinpoint the true disease genes from linkage loci or from the whole genome. 
Further analysis shows that CIPHER is robust to noise in the phenotype similarity data 
and the protein network data. Without any modification, CIPHER can be applied to de 
novo discovery, that is, to diseases without known disease genes (without mapped locus or 
with mapped but uncharacterized loci).

A case study for breast cancer is presented to demonstrate CIPHER’s ability in de novo 
discovery of breast cancer genes. Sixteen known breast cancer genes are treated as non-breast 
cancer genes and then the whole human genome is prioritized by CIPHER. When using a 
shortest path length measure of distance (CIPHER-SP), the well-characterized breast cancer 
gene BRCA1 is ranked at the top, and 10 of the 16 genes are ranked in the top 300, roughly 
the top 1% of the human genome (Table 11.2). In addition, among the top 10% of the pri-
oritized human genome the same de novo prioritization identifies 15 genes that have been 
suggested recently to be novel breast cancer genes, including AKT1, ranked at 27, a novel 
oncogene, and recently a transforming mutation was identified in human breast, colorectal, 
and ovarian cancers (Carpten et al. 2007). The case study also shows that, though direct 
neighbor distance measure (CIPHER-DN) works better on ranking known breast cancer 
genes than CIPHER-SP, it fails to assign ranks to many of the novel susceptibility genes.

All the advantages of CIPHER enable us to perform genome-wide candidate gene pri-
oritization for almost all human diseases, leading to a comprehensive genetic landscape of 

taBLe 11.2 The Ranks and Percentages of Known 
Breast Cancer Susceptibility Genes in Genome-Wide 
de Novo Prioritization

Known Breast 
Cancer Gene

Rank by 
CIPHER-SP

Rank by 
CIPHER-DN

BRCA1 1 2
AR 3 3
ATM 19 4
CHEK2 66 19
BRCA2 139 49
STK11 150 21
RAD51 174 36
PTEN 188 24
BARD1 196 41
TP53 287 45
RB1CC1 798 6360
NCOA3 973 343
PIK3CA 1644 367
PPM1D 1946 7318
CASP8 4978 2397
TGF1 7116 3502
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human diseases. Automatic clustering and enrichment analysis of the landscape reveal the 
modularity of human disease and gene relationships (Wu et al. 2008).

11.3.2.2.4 Network Alignment To fully explore the modularity of the human disease genetic 
landscape, Wu, Liu, and Jiang (2009) borrow ideas from the study of conservation in protein 
networks (Sharan et al. 2005), or network alignment. Sharan et al. propose a local align-
ment technique to identify conserved modules between two or more protein interaction 
networks. To apply this technique, Wu, Liu, and Jiang (2009) created a human disease net-
work by linking diseases with a phenotypic similarity score larger than a given threshold, 
resulting in a human disease similarity network. Then they used the network alignment 
technique to compare the human disease network and human protein network, and identify 
39 disease modules together with corresponding gene modules, or bimodules. Examining 
the functions of genes and categories of diseases, they show that these bimodules represent 
disease families and their common pathways. After validating the bimodule identification 
methods, they propose to use it for disease gene prediction. Essentially, they predict a candi-
date gene to cause a disease if it is linked to the disease in a bimodule. This approach, named 
AlignPI (Wu, Liu, and Jiang 2009), attains similar performance with CIPHER.

11.3.3  Prioritize by network centrality

The working principle for methods in this category is totally different from those discussed 
above. Here we assume that genes with higher centrality on a network are more likely to 
cause disease. To be more informative, the network is often specially designed.

11.3.3.1  Centrality in a Context-Specific Gene Network
Ozgur et al. (2008) introduce a sophisticated automatic literature mining approach to con-
struct a disease-specific gene interaction network, in their example, a prostate caner net-
work. Hypothesizing that genes with high centrality in a disease-specific network are likely 
to be related to the disease, they used several network centrality measures to rank genes in 
the prostate cancer network, and found that two measures, degree and eigenvector, were 
highly informative of known prostate cancer genes. Specifically, 19 of the top 20 genes 
returned by the approach have supportive evidence from either OMIM or PGDB (Prostate 
Gene DataBase; L.C. Li et al. 2003), a curated database of genes related to prostate cancer. 
One limitation of the approach is that, similar to the Molecular Triangulation approach 
(Krauthammer et al. 2004), it relies on a list of seed genes (genes known to be involved in 
the disease) to construct the network, yet to what extent the choice of seed genes influences 
the results is not discussed. In a second study, Ortutay and Vihinen (2009) create a human 
immune gene interaction network by linking curated immune genes with interaction data 
from HPRD, and use multiple centralities, including degree and closeness, to prioritize 
candidate genes for immunodeficiencies.

11.3.3.2  Centrality in a Genomic-Phenomic Network
So far we have focused on networks whose nodes are genes or proteins. There are also other 
network approaches using more complicated networks. For example, Gudivada et al. (2008) 
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create a network of various concepts, with edges representing the association between genes 
and Gene Ontology annotations, pathways, mouse phenotypes, and human clinical fea-
tures, therefore establishing a semantic web of integrated genomic and phenomic knowl-
edge. Assuming that disease-causing genes tend to play functionally important roles and 
share similar biochemical characteristics with genes causing diseases with similar clinical 
features, the authors use a Google-like search and ranking algorithm (Mukherjea 2005) to 
prioritize candidate genes. The efficiency of the proposed approach is tested in prioritizing 
candidate genes for cardiovascular diseases.

11.3.4  other Methods

Here we discuss several interesting and promising approaches that do not fall into the 
above categories. These methods are interesting because they do not rely on known disease 
gene or disease similarity, yet still are able to find the causal gene based on the genome-
wide secondary response.

Mani et al. (2008) propose a method called Interactome Dysregulation Enrichment 
Analysis (IDEA) to predict oncogenes. Using interactome and microarray data, they first 
identify dysregulated interactions, that is, gene pairs with annotated interaction but sig-
nificantly changed correlation according to gene expression profiling of normal and tumor 
samples. Then genes with an unusually high number of dysregulated interactions in its 
neighborhood are predicted as oncogenes. The assumption is that genes implicated in can-
cer initiation and progression will show dysregulated interactions with their molecular 
partners. In three B-cell tumor phenotypes, the method correctly identifies the known 
genes in the top 20 candidates out of about 8000 genes. The IDEA method exploits direct 
neighbors only. As demonstrated by other examples discussed in previous sections, short-
est path-based analysis might yield higher coverage and more novel predictions that are 
not so obvious from protein interaction data.

A more sophisticated network-based approach has been proposed to solve a problem with 
similar settings. With the protein interaction network available, Karni, Soreq, and Sharan 
(2009) attempted to predict the causal gene from expression profile data assumed to be per-
turbed by the gene. They first identified a set of disease-related genes whose expression is 
changed in the disease state, then based on a parsimonious assumption, an algorithm sought 
the smallest set of genes that could best explain the expression changes of the disease-related 
genes in terms of probable pathways leading from the causal to the affected genes in the 
network. Experiments with both simulated and real knock-out data show that the proposed 
approach attains very high accuracy. Further validations on expression data from different 
types of cancer show high accuracy in pinpointing known oncogenes. For example, using 
expression profiles for a subset of acute leukemias involving chromosomal translocation of 
the mixed leukemia gene (MLL), the algorithm correctly assigns MLL an average rank of 1.5, 
out of 168 genes in the neighboring region. When applying the algorithm to four breast can-
cer datasets, the major causal genes BRCA1 and BRCA2 are ranked very high. They are also 
able to show that the algorithm outperforms a naive algorithm that ranks disease-associated 
genes according to their shortest path length in the network to the directly affected genes.
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11.4  dIScuSSIon
Five years after the first network-based candidate gene prioritization method (Krauthammer 
et al. 2004), now there are more than 20 available in the published literature (Table 11.1), 
calling for a comprehensive comparison among them. Unfortunately, a systematic and 
rigorous direct comparison is very difficult and seldom occurs in the literature, mostly 
because different methods use different types of data sources, and are trained and tested 
on customized datasets which are often unavailable to others. For methods running with 
the same type of data sources, one can re-implement different methods proposed by other 
groups, and compare them using one dataset that is probably not the original dataset on 
which most methods were tested. Such a comparing scheme is only feasible for compar-
ing methods that are easy to implement. For example, Kohler et al. (2008) implemented 
four algorithms that are purely network based and compared their performance, showing 
the superiority of global distance measures. For situations where methods are not easy to 
implement, researchers often compare self-reported performances along with the original 
publications. Self-reported performances are often transformed into so-called (average) 
fold enrichment, that is, the average fold of enriching the true disease genes among a short 
top list, compared to random selection (Lage et al. 2007; Wu et al. 2008). According to this 
criterion, disease similarity-assisted methods significantly outperform previous methods, 
and we are able to show that CIPHER works even better, especially for higher recall. The 
problem with the fold enrichment criterion is that it is influenced by the total number of 
candidate genes and the size of the top list, while these numbers often vary across different 
methods. For comprehensive comparison, a community-wide effort is needed, to establish 
a publicly available data platform, including widely used different data sources, a train-
ing dataset of known gene-disease associations, and a blinded test dataset. Such efforts 
have recently been performed in a related field, the mouse gene function prediction (Pena-
Castillo et al. 2008).

Most of the methods discussed here are not designed particularly for cancer, though they 
can be applied to cancer without any modification. Here we discuss some cancer specific 
issues. Though these issues are not particularly related with network-based approaches, 
it will be important for us to realize their impact. First, prediction methods generally do 
not differentiate two types of cancer genes that are different in many aspects, thus fail to 
generate more testable hypotheses that could guide further experimental validation. Genes 
that can initialize tumorigenesis are traditionally divided into oncogene and tumor sup-
pressor gene, though more recently stability gene has been proposed to be a further type 
of cancer gene (Vogelstein and Kinzler 2004). Study has shown that a classifier using pro-
tein conservation, gene sequence, protein domains, protein interactions, and regulatory 
data is able to differentiate oncogenes from tumor suppressor genes (Furney et al. 2008a). 
Specifically, they show that tumor suppressor genes have higher degree than oncogenes, 

Together, these results imply that oncogenes and tumor suppressor genes may be inher-
ently different. Taking the difference into consideration may further improve the predic-
tion of cancer genes. In addition, the experimental procedures to verify oncogenes and 

while oncogene evolution appears to be more highly constrained (Furney et al. 2008b). 
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tumor suppressor genes are different, computational prediction will facilitate the verifica-
tion if it can tell oncogene from tumor suppressor gene. Another special issue for cancer 
gene prediction is that there are several cancer-specific genome-wide data sources which 
may greatly advance the prediction of cancer genes. For example, large-scale sequencing of 
the human cancer genome has identified thousands of genes carrying nonsilent mutations 
in breast or colon cancer samples (Sjoblom et al. 2006; Wood et al. 2007), while array-based 
techniques, such as array comparative genomic hybridization (aCGH; Pinkel et al. 1998) 
and representational oligonucleotide microarray analysis (ROMA; Lucito et al. 2003) have 
been developed to localize genes with altered copy numbers (amplified or deleted) in can-
cer samples. Combining candidate genes identified from the above large-scale screen and 
computational cancer gene prioritization methods will greatly facilitate the discovery of 
human cancer-causing genes.

With the development of high-throughput techniques in exploring the human cancer 
genome, and the increasing quality in large-scale detection of protein interactions, net-
work-based cancer gene discovery will remain promising and continue to be an active 
research area. Progress in this area will also benefit from other network-based research, 
such as the network-based prediction of protein functions (Sharan, Ulitsky, and Shamir 
2007), especially functions of cancer genes (Hu et al. 2007), and the discovery of novel drug 
targets for cancer (Campillos et al. 2008; Huang and Harari 1999), since the formulation 
are similar thus novel methods developed for one problem may also apply to the other. We 
expect that network analysis will provide both systems thinking and methodology advan-
tages in our way to understand the complexity of life.
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